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CHAPTER 1. GENERAL INTRODUCTION 

 

1.1 Experimental phenomena in DAC and RDAC 

Mechanochemistry investigates the effects of nonhydrostatic stresses and plastic 

strains on various structural changes including phase transformations (PTs) and chemical 

reactions1. PTs under high pressure and plastic shear are widespread in nature (e.g., in 

geophysics), physical experiments, and modern technologies. For examples, deep 

earthquakes are related to the instability due to shear strain-induced PT; the synthesis of 

various chemical compounds by ball milling is caused by strain-induced PTs; and shear 

ignition of energetic materials with goal to assess safety issues is another example. A 

diamond anvil cell (DAC) is a powerful tool to generate high pressure and large shear 

and in situ study PTs to high pressure phases, using modern diagnostics, like x-ray, 

Raman, and optical techniques2-6. After compression of the materials in DAC7-9 when 

there is no liquid medium surrounding the sample, highly heterogeneous distributions on 

pressure were revealed; small steps of pressures which almost keep a constant with the 

growth of loading were found in the two-phases region. It is known from numerous 

experiments that the addition of plastic shear, due to the rotation of an anvil, leads to 

findings that have both fundamental and applied importance. Below, most experimental 

phenomena which occur during the compression and larger shear of various materials in 

DAC and rotational DAC (RDAC) were enumerated (see more details in Refs. 1 and 10): 

1. Rotation of one anvil significantly reduces the PT pressure for some materials. 

For example, for PT from B1 to B2 in KCl, the pressure at the diffuse interface between 

these phases decreases from 2.4-3.0 to 1.8 GPa due to rotation of one anvil8. Note that 
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even in DAC without the rotation of an anvil, plastic deformation also significantly 

reduces the PT pressure. For example, an irreversible PT from  Al2O3 to a new phase 

occurred under a quasi-hydrostatic condition over 50 GPa but under a non-hydrostatic 

pressure above 35 GPa11. 

2. Small pressure plateaus (which almost keep a constant value during loading) 

were found on the very heterogeneous pressure distribution8, 12. These steps of pressure 

are located in two-phases regions where PTs occur. It is assumed that the pressure value 

at these plateaus could be used as the pressure to characterize the PTs 8. 

3. The difference p  between the starting pressures of direct and reverse PTs is 

reduced by rotation of an anvil. For PT in Insb, from semiconductor to metal p  is 1.0 

GPa under shear and it is 1.75 GPa under hydrostatic conditions13.  

4. Direct PT pressure under plastic shear is lower than equilibrium pressure (e.g. 

from semiconductor to metal in InSb, InTe, Ge (from I to II) and Si (from I to II)13) .  

5. Rotation of an anvil induces the generation of new phases which did not appear 

without rotation. As examples, the rhombohedral Phase of GeTe14, Cu I-VIII phase15, 

phase V of fullerene C60
7, 12 were not obtained without shear but obtained with large 

shear. 

6. For some materials, a reversible PT is substituted an irreversible one under shear 

deformation16. 

7. The volume fraction of the new phase is an increasing function of the rotation 

angle17 and plastic strain, and the PT is strain-controlled rather time controlled.  

8. Pressure increases in the transforming region in RDAC. Sometimes, at a given 

compressive force and with increasing rotation angle, the pressure grows in the 
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transforming zone in spite of reduction in volume during PT7-9, 12, 15, which is so-called 

'pressure self-multiplication effect'. However, it is also found that pressure decreases in 

the centre of sample from 34 to 24 Gpa on the appearance of a new Cu I-VIII phase in 

RDAC at fixed axis force18. 

9. Without a PT, the pressure distribution is practically independent of rotation, e.g. 

for Nacl12. 

1.2 Motivations 

 Within a liquid the sample is subjected to hydrostatic loading and undergoes 

pressure-induced phase transformations and it starts by nucleation at pre-existing defects 

(pressure and stress concentrators). In order to study the effect of plastic deformations on 

PTs, a rotational DAC was utilized7, 19-22, in which large plastic shear due to rotation of 

one of the anvils is superposed on high pressure. Such PTs are classified as strain-

induced ones and they occur by nucleation at defects that continuously appear during the 

plastic deformation1. In fact, PTs under compression without hydrostatic media in 

traditional DAC are also strain-induced rather than pressure-induced, because they occur 

during intense plastic flow of materials1, 23. As it was discussed in Ref. 1, 23, 24, the only 

difference between PTs under compression in DAC and compression and torsion in 

rotational DAC is the pressure-plastic strain history for each material point of the sample. 

Thus, the main focus is on the strain-controlled kinetic equation (8) in Chapter 2 for the 

concentration of the high pressure phase, c , with respect to undeformed state, which is 

independent of time and depends on four main parameters: (1) kinetic parameter k  

which scales the rate of PTs, (2) the minimum pressure dp  below which direct strain-

induced PT cannot occur, (3) the maximum pressure rp  above which reverse strain-
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induced PT does not take place, and (4) the ratio of yield strengths of low (
1y ) and high 

pressure (
2y ) phases. We are unaware of any publications that determine parameters of 

the kinetic equation and fields of stress and strain tensors experimentally. Pressure 

distribution and concentration of high pressure phase distributions along the radius of a 

sample are available only. As a consequence, theoretical and finite element methods have 

been developed and applied for investigation of variation of stress tensor, accumulated 

plastic strain, and concentration fields in a sample during plastic flow and PTs and for 

analysis and interpretation of experimental results.  

Numerical results, published in Refs. 23, and 24, describe a number of experimental 

observations, however they are incomplete because they are obtained for d rp p 
 
only. 

In this case, both direct and reverse PTs cannot occur for values of pressure p in the 

range r dp p p   ; above dp  
direct PT occurs only and below rp  

reverse PT takes place 

only, reaching complete transformation at very large plastic strain. However, the case 

d rp p 
 
is at least of the same importance, for which both direct and reverse PTs occur 

in the pressure range d rp p p   . One of the goals of the dissertation is to study in detail 

coupled plastic flow and PTs in a sample in DAC for the case with d rp p  . Another goal 

is to study plastic flow and PTs after unloading and reloading, which was never done 

before. In many cases, high pressure phase is metastable after pressure release and can 

exist and be studied at ambient conditions. However, if there is no reverse PT under 

hydrostatic loading-unloading, this does not mean that reverse PT will not occur during 

the reduction of the load to zero after strain-induced PT. In Chapters 2 and 3, the effects 
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of d rp p  , and processes of unloading and reloading are investigated in detail for DAC 

and RDAC. 

Without PTs (and, in some cases, with PTs), pressure p distribution within a sample 

along the radius r is determined by a simplified equilibrium equation 
2


c

zrdp

dr h
, where 

c

zr  is the radial frictional shear stress at the contact surface with an anvil, and h is the 

current thickness of the sample. Without friction, pressure is constant along the radius 

and there is no way to increase it to high value, namely above material hardness. In 

contrast, if the maximum possible friction stress is equal to the yield strength in shear 
y  

and there is a large ratio of the sample radius R to the thickness, then pressure grows 

linearly from the periphery to the center and can reach several megabars in magnitude. 

Thus, the entire field of high pressure physics and material science is based on the ability 

to create frictional resistance to the radial plastic flow in the thin sample during its 

compression. Therefore, taking a suitable friction model into account is another goal. In 

Chapters 4 and 5, combined plastic and Coulomb friction are proposed to study the 

effects of friction including Coulomb friction coefficient and differences between 

slippage and cohesion models are compared. 

In most cases, the sample is placed inside of a deformable gasket made of a 

material with different strength. If achieving maximum possible pressure in a reasonably 

large volume is the goal, the gasket is made of the strongest possible materials, such as 

T301 stainless steel25, rhenium26, and even diamond powder27. If the goal is just to avoid 

an intense flow of powder sample at the initial stage of compression, a weak gasket could 

be made of polymer, paper, or cardboard. Consequently studying on the effects of gasket 
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will help us to design experiments to obtain faster/slower PT rate. In Chapter 6, the 

effects of gasket in DAC are studied in detail. 

 The paper is organized as follows. In Chapter 1, several important experimental 

phenomena in DAC and RDAC are enumerated and the motivations of this dissertation 

are elaborated. In Chapter 2, PTs under compression, unloading and reloading in DAC 

are investigated. In Chapter 3, simulation of loading, unloading, and reloading in RDAC 

is discussed. In Chapters 4 and 5, effect of contact sliding in DAC and RDAC is studied. 

In Chapter 6, effect of gasket’s strength and size on the strain-induced PTs in a sample is 

investigated. And Chapter 7 draws the general conclusion about this dissertation and 

future directions for my research are introduced.  
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CHAPTER 2. STRAIN-INDUCED PHASE TRANSFORMATIONS UNDER 

COMPRESSION, UNLOADING, AND RELOADING IN A DIAMOND 

ANVIL CELL 

Modified from a paper published in Journal of Applied Physics 

Biao Feng1, Oleg M. Zarechnyy1, and Valery I. Levitas2, 

1) Department of Aerospace Engineering, Iowa State University, Ames, Iowa 50011, USA 

2) Departments of Aerospace Engineering, Mechanical Engineering, and Material 

Science and Engineering, Iowa State University, Ames, Iowa 50011, USA 

 

Abstract 

Strain-induced phase transformations (PTs) in a sample under compression, 

unloading, and reloading in a diamond anvil cell (DAC) are investigated in detail, by 

applying finite element method. In contrast to previous studies, the kinetic equation 

includes the pressure range, in which both direct and reverse PTs occur simultaneously. 

Results are compared to the case when “no transformation” region in the pressure range 

exists instead, for various values of the kinetic parameters and ratios of the yield 

strengths of low and high pressure phases. Under unloading (which has never been 

studied before), surprising plastic flow and reverse PT are  found, which were neglected 

in experiments and change interpretation of experimental results. They are caused both 

by heterogeneous stress redistribution and transformation-induced plasticity. After 

reloading, the reverse PT continues followed by intense direct PT. However, PT is less 

pronounced than after initial compression and geometry of transformed zone changes. In 

                                                 
 Corresponding author.  

Email: vlevitas@iastate.edu 

mailto:vlevitas@iastate.edu
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particular, a localized transformed band of a weaker high pressure phase does not 

reappear in comparison with the initial compression. A number of experimental 

phenomena are reproduced and interpreted.  

2.1 Introduction  

A diamond anvil cell is a powerful tool to generate high pressure and in situ study PTs to 

high pressure phases, using modern diagnostics, like x-ray, Raman, and optical 

techniques1-5. When hydrostatic media is used, PT is classified as pressure-induced one 

and it starts by nucleation at pre-existing defects (pressure and stress concentrators). In 

order to study the effect of plastic deformations on PTs, a rotational DAC was utilized6-10, 

in which large plastic shear due to rotation of one of the anvils is superposed on high 

pressure. Such PTs are classified as strain-induced ones and they occur by nucleation at 

defects that continuously appear during the plastic deformation11. In fact, PTs under 

compression without hydrostatic media in traditional DAC are also strain-induced rather 

than pressure-induced, because they occur during intense plastic flow of materials11,12. As 

it was discussed in Refs. 11-13, the only difference between PTs under compression in 

DAC and compression and torsion in rotational DAC is the pressure-plastic strain history 

for each material point of the sample. It was found in Refs. 11, 14, and 15 that strain-

induced PTs require completely different thermodynamic and kinetic treatment and 

experimental characterization than pressure-induced PTs.  Thus, the main focus is on the 

strain-controlled kinetic equation (8) for the concentration of the high pressure phase, c , 

with respect to undeformed state, which is independent of time and depends on four main 

parameters: (1) kinetic parameter k  which scales the rate of PTs, (2) the minimum 

pressure dp  below which direct strain-induced PT cannot occur, (3) the maximum 
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pressure rp  above which reverse strain-induced PT does not take place, and (4) the ratio 

of yield strengths of low (
1y ) and high pressure (

2y ) phases. We are unaware of any 

publications that determine parameters of the kinetic equation and fields of stress and 

strain tensors experimentally. Pressure distribution8, 16-20 and concentration of high 

pressure phase distributions18, 19 along the radius of a sample are available only. As a 

consequence, theoretical and finite element methods have been developed and applied for 

investigation of variation of stress tensor, accumulated plastic strain, and concentration 

fields in a sample during plastic flow and PTs and for analysis and interpretation of 

experimental results11-13, 21, 22. Numerical results, published in Refs.12, 13, 21, and 22, 

describe a number of experimental observations, however they are incomplete because 

they are obtained for d rp p 
 
only. In this case, both direct and reverse PTs cannot occur 

for values of pressure p in the range r dp p p   ; above dp  
direct PT occurs only and 

below rp  
reverse PT takes place only, reaching complete transformation at very large 

plastic strain. However, the case d rp p 
 
is at least of the same importance, for which 

both direct and reverse PTs occur in the pressure range d rp p p   . This leads to a 

stationary value of concentration 0<c<1 at very large plastic strains, which was observed 

experimentally for various pressure-shear loading, e.g., under high pressure torsion23-25 

and ball milling26-29. Therefore, new PT features and phenomena may appear. One of the 

goals of the paper is to study in detail coupled plastic flow and PTs in a sample in DAC 

for the case with d rp p 
  

and various values of the kinetic parameter k  and the ratio of 

the yield strengths, and to compare results with the case of d rp p  . Another goal is to 

study plastic flow and PTs after unloading and reloading, which was never done before. 
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In many cases, high pressure phase is metastable after pressure release and can exist and 

be studied at ambient conditions. However, if there is no reverse PT under hydrostatic 

loading-unloading, this does not mean that reverse PT will not occur during the reduction 

of the load to zero after strain-induced PT. In many cases (excluding in situ studies), 

concentration of phases is determined after unloading23-29 but is related to the loading 

process with a salient assumption that it does not change during unloading because of the 

absence of plastic deformation. As we will show, in contrast, unloading is accompanied 

in many cases by plastic flow and reverse PT, which should be taken into account in 

experiments. Finally, reloading is studied to explore an additional pressure-plastic strain 

path and its relevance for experimental realization.  

2.2     Problem formulation 

Phase transformations coupled to plastic flow, in a sample of radius R  compressed by 

axial force P  between two rigid diamonds under loading, unloading, and reloading are 

studied in this paper using the same physical and geometric models as in Refs. 12, 13,22. 

Geometry and boundary conditions are shown in Fig. 1.  

To obtain generic results, we consider the simplest isotropic, perfectly plastic model, and 

the total system of equations are given as follows12: 

Decomposition of deformation rate d  into elastic (subscript e), transformational (t), and 

plastic (p) contributions: 

d ε I de t p


   .                                                                    (1) 

Elasticity rule (Hooke's law): 

                  0 ; 2e ep K Gdev s ε .                                                  (2) 
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Transformation volumetric strain: 

ctt   .                                                                  (3) 

Von Mises yield condition: 

   
0.5

1 2

3
: 1

2
i y y yc c c   

 
     
 

s s .                                                        (4) 

Plastic flow rule in the plastic region: 

  cyi    and  0 s s                  
p d s ;   

 2 1

2

3 :

2

y y

y y

c

G

 


 


 

s d
 ;                   

(5) 

in the elastic region: 

 cyi    or   cyi    and   0 s s                         0p d .                             (6) 

Momentum balance equation: 

0. T                                                               (7) 

Strain-controlled kinetics for phase transformations: 

     

  12

1

2

1

1

10
yy

rr

y

y

dd

cc

pHpcpHpc

k
dq

dc











  ;                                                 (8) 

with 
1/2(2 / 3 : ) ,p pq  d d

dd

h

d

d
pp

pp
p








  and 

rr

h

r

r
pp

pp
p








 . 

Here, s  is the deviator of the true stress tensor T , devs T ;  e


 and s


 is the Jaumann 

objective time derivative of the elastic strain and deviatoric stress; I is the second-rank 

unit tensor; K  and G  designate bulk and shear moduli, respectively; 
i


 
is the second 

invariant of the stress deviator; 
0e  and t are the elastic and transformation volumetric 
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strains for complete PT, respectively; H  is the Heaviside step function; d

hp  and r

hp  are 

the pressures for direct and reverse PTs under hydrostatic loading, respectively, and q is 

the accumulated plastic strain (Odqvist parameter). Without PTs, the applicability of the 

perfectly plastic and isotropic model for monotonous loading is justified in Ref. 30 for 

various classes of materials (rocks, metals, pressed powders, etc.) starting with plastic 

strains q>0.6÷1 both for normal and high pressure. Additional confirmations for steel and 

NaCl were obtained with rotational DAC in Ref. 31. Note that the yield strength in the 

perfectly plastic state is independent of the deformation history30.  Also, our goal is to 

perform simulation of strain-induced PTs rather than just plastic flow. Since there is no 

available experimental data on such transformations, there is no sense to combine more 

sophisticated models for plastic straining (e.g., model for a polycrystalline aggregate32) 

with the simplest model for PT. 

Assumption of small elastic strains limits pressure to the value of 0.1 K, which is 

of the order of magnitude of 10 GPa. Under such a maximum pressure, change in 

geometry of the diamond anvils is negligible, which can be shown by solution of elastic 

problem for an anvil33-35. Thus, assumption that the anvils are rigid is justified.  

It is not a problem to include deformation of anvils and strain hardening in the 

model, if it would be necessary. However, this paper is among very few first numerical 

studies of strain-induced PTs in DAC and as we wrote before, we want to obtain results 

that are generic for a wide class of materials. If we introduce some hardening parameters 

and/or specific geometry of an anvil and way of its fixation, we will lose the generic 

character of the results and gain the secondary effects only. 
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Finite element method and code ABAQUS36 have been utilized for solution of 

axial symmetric problems. In the dimensionless form, all stress related parameters 

(excluding shear stress, see below) are divided by 
1y ; the dimensionless axial force 

F normalized by the product of total initial contact area of a sample and 
1y . For precise 

comparison with the results for d rp p   in Ref. 22, we assume dimensionless 6.375dp   

and 6.75rp   (i.e., just switch values 6.75dp   
and 6.375rp  ) and keep other material 

parameters, 11.25d

h
p   and 1.875r

h
p   exactly the same like in Ref. 22.  

 

 

 

 

 

 

(a) 

 

 

 (b) 

 

 

 

(c) 

FIG. 1 (a) Diamond anvil cell scheme, (b) quarter of a sample in initial undeformed state, 

and (c) boundary conditions including no slipping on the contact surface between 

sample and diamond anvil.  
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2.3     Phase transformations under loading 

In this section, our principal aim is to investigate effects of characteristic pressures for 

d rp p 
 
(in contrast to Ref. 22) on PTs, for various kinetic parameters k  and ratios of 

yield strengths of high and low pressure phases. Previous simulations12, 13, 21, 22 with 

d rp p  did not allow the PTs to occur when pressure p  lies between two characteristic 

pressures, r dp p p   . In the current simulations, d rp p  and therefore there is no such 

limitation, and both direct and reverse PTs can happen when d rp p p   . Before high 

pressure phase appears, the largest pressure is located at the center of a sample, and 

pressure is gradually decreasing with increase of coordinates r  or z . Once pressure 

reaches dp  at the center of sample and since accumulated plastic strain increases in most 

region of r R , high pressure phase firstly appears there, regardless of the value of k  

and the ratio of yield strengths. However, close to dp  concentration of high pressure 

phase is still pretty low and is not shown in Fig. 2.  

Concentration of a weaker (
2 10.2y y  ) high pressure phase c  is shown in Fig. 

2 with 5,10, 30k   and under the rising dimensionless load F . One can note that: (1) 

with load F rising, PT shifts from the center to a localized plastic shear and PT bands and 

then propagates within these bands; (2) geometry of the transformed zone differs from 

the case with d rp p  12, 13, 21, 22, especially for k=5, when the multi-connected 

transformed region first appears due to strain localization and heterogeneous pressure 

distribution; and (3) in contrast Ref. 22, PTs for all k  reach the contact surface at lower 

load, which is convenient for detecting PTs using surface-based (e.g., optical and Raman) 

methods in experiments; especially for k=30 PTs in Ref. 22 did not reach the surface at 
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all. Because the threshold value dp  for direct PT is accepted lower in this paper than that 

in Ref. 22, direct PT occurs at lower load in the region close to contact surface, where the 

pressure is usually lower than the one at the symmetry plane at the same coordinate r .  

       

               

 

FIG 2 Concentration of high pressure phase c  under loading for k  5, 10, and 30; 

2 10.2y y  and 0.72r R   in Fig.1 (b). The dimensionless axial force F  is (1) 

4.09, (2) 4.23, (3) 4.37, (4) 4.54, (5) 4.71, (6) 4.97. 

Fig. 3 shows the distributions of pressure p  and the volume fraction of a weaker 

high pressure phase c  at the contact surface of the sample for k equal to 5 and 10. There 

are two separate regions where PT occurs, and two pressure plateaus appear there with 

pressures well above dp  and rp . Between two PT regions, another plateau in pressure 

distribution exists with the magnitude between  dp  and rp . However, concentration c  in 

1.000 

0.833 

0.667 

0.500 

0.333 

0.166 

0.000 
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this region is quite low and even equal to zero because of low accumulated plastic strain 

increment. Also, both direct and reverse PTs occur in this range and even the maximum 

(stationary) value of c is quite low for the weaker high pressure phase14,37 . Pressure at the 

plateau close to the symmetry axis is almost constant under different loads at k=5; 

pressure at other two plateaus is almost independent of load at k=10.  Consequently, the 

kinetic parameter k not only influences the rate of PT and configuration of PT regions 

(see Fig. 2) but also determines the positions of constant pressures. In contrast to the case 

with d rp p 
 

22, where the pressure in the weakly or non-transformed region 

corresponded to dp , here it is between dp  and rp . Thus, none of the plateaus correspond 

to dp  and rp , and they are determined by mechanics of interaction of plastic flow and 

PT kinetics. In addition, Fig. 3 exhibits similar oscillatory features of experimental plots 

for ZnSe17 and simulation results22.  

In the rest of this section, PTs to high pressure phase with 
2 1y y   are 

discussed. Small steps (plateaus) with almost constant pressure are found in experiments8, 

16, 17, 31 at the very heterogeneous pressure distribution plots. They correspond to the two-

phase region, which, like in Ref. 22, is clearly reproduced for k=30 only rather than for 

k=1, 5, or 10. Therefore, for brevity, the concentrations of high pressure phase and 

pressures on the contact surface are discussed for 30k   only.  

Fig. 4 exhibits the same trends as in the experiments in Ref. 17: pressure 

monotonously grows from the periphery to center; there are two steps in pressure; the 

first one located in the center of the sample is much wider than the second one, which is 

located in the two-phase region. Comparing to the case for 2 10.2y y  (Fig. 2), the PT 

localization and pressure oscillations are almost eliminated. Therefore one wider region 
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instead of two isolated regions with high pressure phase appears on the contact surface of 

the sample.  
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(b) 

FIG. 3 Distributions of dimensionless pressure p and high pressure phase concentration 

c  on contact surface under loading , for k  5, 10 and 2 10.2y y  .  
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(b) 

FIG. 4 Distributions of dimensionless pressure p  and high pressure phase concentration 

c  on contact surface under loading, for k  30 and 2 1y y  . 

While in Ref. 22 pressure at the step in the two-phase region was independent of 

the load and just slightly above dp , here it varies between two characteristic pressures 

dp  and rp , and increases with increasing load. Thus, it is more difficult to determine the 
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value dp from experiment for  d rp p 
 
than for d rp p  . Plateaus in the central region of 

the sample, while similar to those in experiments16,31, are not related to dp  and rp  at all.  

Fig. 5 shows the distribution of contact shear (friction) stress normalized by the yield 

strength in shear 
1y = 1 3y  for 30k   and 

2 1y y  . We accept that the positive 

direction of shear stress points to the center and corresponds to the flow toward 

periphery. Due to compression, the material flows from the center to periphery. On the 

contrary, volumetric reduction due to PT at the center causes the material to flow from 

periphery to the center in the initial stage of PTs. With further compression, PT has 

almost completed in the center of the sample and mostly propagated into the two-phase 

region close to periphery, and then PT causes the material to flow toward this two-phase 

region instead of the sample’s center. Both the direction and magnitude of shear stress on 

the contact surface result from the competition between these two flows. Because of the 

symmetry, shear stress is equal to zero at the axis of symmetry; at the 

periphery 0.7 1r R  , shear stress is equal to yield strength in shear 
1y . Fig. 5(a) shows 

that: (1) at the initial stage of PTs at 4.44F  , shear stress close to the center is near to 

zero because both flows due to compression and volume reduction due to PT are small 

and compensate each other; (2) under further compression, because the flow due to PTs 

in the center surpasses the flow due to compression, the shear stress becomes negative 

but then changes sign, and increases until it reaches the yield shear strength; (3) At 

5.22F  , the PT at the center is fully completed (therefore no further reduction in 

volume is possible) and flow to the periphery due to compression dominates, which 

causes shear stress to increase from zero to a maximum followed by a drop due to fast 

PT-induced reduction in volume in two-phase region. Similarly, one could interpret the 
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plots in Fig. 5(b). Like pressure in Fig.4, the shear stress curve also becomes smoother 

due to the increase in strength of high pressure phase. Comparison with Ref. 22 

demonstrates the similar trends in shear stress, but with some quantitative differences. In 

particular, the extrema in two-phase region are closer to periphery in our simulations 

because PTs propagates faster towards periphery due to lower dp .  
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(b) 

FIG. 5 Distributions of dimensionless pressure zr  normalized by yield strength in shear 

1y on contact surface under loading, for k  30 and 2 1y y  .   
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2.4     Strain induced phase transformations during unloading 

Change in concentration of high pressure phase during reduction of applied force 

down to zero was never studied numerically or in experiments. Characterization of PT 

processes under pressure based on the results of measurements after complete pressure 

release 23-29 is based on the strong assumption that there are no PTs during unloading. In 

this section, the unloading is studied and a surprising result is obtained: for a fast kinetics, 

k=30, and 
2 1y y  , unloading is accompanied by plastic flow, which causes first a 

small increase in c  above dp  followed by much stronger reverse PT below rp . We will 

focus on k=30, because for k =10 and smaller, the change in concentration during 

unloading is small.  

    
 

           
 

FIG. 6 Concentration of high pressure phase c  under unloading for k  30 and 

0.84r R  . Initial axial force F for unloading is 5.21 for 2 10.2y y  , 6.01 for 

2 1y y   and 6.13 for 
2 15y y  , respectively. 
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Fig. 6 exhibits variation of concentration c during unloading for three ratios of the 

yield strengths. Fig. 7 shows distributions of pressure, concentration of the high pressure 

phase, and accumulated plastic strain along the symmetry plane. The symmetry plane is 

chosen for comparing with results of reloading, because PTs do not occur on the contact 

surface under reloading but occur at the symmetry plane (see section V). For 
2 15y y  , 

PT is not visible under unloading, because the high pressure phase with large yield 

strength practically does not deform.  For 
2 1y y  , significant reduction in 

concentration, down to complete reverse PTs in some regions is clearly shown. In 

particular, for the case with 
2 10.2y y  , the transformed band disappears completely. 

Unlike the evolution of the direct PT under loading, reverse PT on unloading progresses 

from contact surface to symmetry plane and from periphery to center, where pressure is 

below rp  (see Fig. 7). After almost complete unloading, the high pressure phase mostly 

retains in the region close to the center and symmetry plane. 

It is clear that the reverse PT occurs in the regions where pressure drops below 

rp and where plastic straining occurs. For the case 
2 10.2y y  , plastic strain localizes in 

the weaker high pressure phase, which promotes the reverse PT as soon as p is getting 

below rp  (Fig. 7a). Pressure significantly reduces in the peripheral low pressure phase 

region of the sample and much smaller reduction is in the central high pressure phase or 

two phase regions. Plastic strain increment reaches 0.1-0.13 and caused reduction in 

concentration Δc by up to 0.8. For 2 1y y  , the increment of accumulated plastic strain 

on the symmetry plane in the central region (r<0.2R) appears in the initial stage of 

unloading only when the pressure is above rp ; at the later stage, there is no change in 
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plastic strain, which results in almost negligible reverse PT (see Fig. 6 and Fig. 7b). In the 

region 0.3<r<0.7, plastic strain increment is in the range 0.1-0.25, which in combination 

with low pressure leads to very intense reverse PT, including complete reverse PT for 

r>0.47. We would like also to notice that at the very initial stage of unloading, in the 

region where dp p , a small increase in concentration (i.e., direct PT) is observed. This 

is visible when distributions of c are compared (Fig. 6) in the central region at F=5.21 

and F=4.03.   

 

 

 

 

 

 

 

 

 

 

 

(a)          (b) 

 

FIG. 7 Distributions of accumulated plastic strain q , pressure p and high pressure 

phase concentration c  on symmetry plane under unloading, for k  30 and 2 1y y  .  

Similar to the pressure distribution on the contact surface, pressure distribution 

curves on the symmetry plane show steps some of which are in the two-phase region. 

With the reduction of load, these steps move from the periphery towards the center along 
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with moving two-phase region. Localization of PTs and strains determines the irregular 

distribution of shear stress in Fig. 8a. Before unloading, there are three drops in shear 

stress due to heterogeneous reduction in volume during PT and plastic flow. Under 

unloading, Fig. 8a shows that the rise in shear stress due to increase in volume during the 

reverse PT surpasses the reduction of shear stress due to unloading. Shear stress reaches 

the yield strength in shear in the major part of the contact surface. For the case 

2 1y y  in Fig. 8b, the initial stage of unloading, reverse PT mostly occurs in the two-

phase region rather than at center (see Fig. 6). This causes shear stress increase in the 

two-phase region and decrease at the center due to reduction of loading. At further 

unloading, the reverse PT shifts to the center, which results the increase of shear stress in 

the center.  

 To summarize, for fast kinetics (k=30) and 
2 1y y  , unloading causes plastic 

flow, which first induces a small increase in c  above dp  followed by quite intense 

reverse PT below rp . 

There are two reasons for plastic flow under unloading. First, because of heterogeneous 

stress,  strain, concentration, and, consequently, strength fields before unloading, 

reduction in the load leads to stress redistribution, during which stress intensity exceeds 

the yield strength in some regions. Then in the regions with rp p (or dp p ) the 

reverse (or direct) PT starts. Volume change due to PTs under nonhydrostatic conditions 

causes additional plastic straining called transformation-induced plasticity (TRIP)11, 18, 19. 

TRIP in turn leads to PTs thus serving as mechanochemical feedback.  

Obtained results require reconsideration of the reported values of concentration in 

experiments24-29, which are based on the measurements of concentration after unloading.  
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To avoid this problem for DAC, one can try to find loading, which will minimize reverse 

PT during unloading. Intuitively, utilization of a gasket with specially designed 

parameters that lead to quasi-homogenous pressure distribution during loading19 should 

lead to minimization of plastic deformation and reverse PT during unloading. This case 

will be studied in the future. 
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(b) 

FIG. 8 Distribution of dimensionless shear stress zr  on contact surface under unloading, 

for k  30 and 2 1y y  .        
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2.5     Phase transformations under reloading 

The aim of this section is to explore a new pressure-plastic strain path for strain-

induced PTs by reloading sample after unloading to the same force. From Fig. 9, one can 

observe that with increase of load, first reverse PT propagates slowly, and direct PT does 

not occur until pressure is above dp . Further, in the pressure range r dp p p   , direct PT 

starts to propagate along with reverse PT. When pressure reaches rp  value, reverse PT 

cannot occur, and direct PT propagates through the sample with increased rate (Fig. 10, a, 

F=5.21; and b, F=6.01). 

   

             

FIG. 9 Concentration of high pressure phase c  under reloading for k  30 and 

0.84r R  . Initial axial force for reloading F are respectively 0.92 

for 2 10.2y y  , 1.23 for 2 1y y   and 2.14 for 2 15y y  . 

For a strong high pressure phase ( 2 15y y  ), PTs practically do not occur 

(similar to unloading), because the reloading occurs in the elastic regime due to high 

yield strength of the high pressure phase. For other cases, comparing the PTs before 
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unloading in Fig. 6, direct PT is obviously less pronounced after unloading and reloading 

than during the first loading. In addition, reloading essentially changes the PT path and 

the PT region is more close to the center and plane of symmetry of a sample. For the case 

with
2 10.2y y  , after unloading and reloading, the thin PT band in Fig. 6 does not 

reappear and PT is not complete in the central region of a sample. For the case 

with
2 1y y  , while radius of the transformed zone is slightly increased, region with 

complete PT is slightly reduced.  
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FIG. 10 Distributions of accumulated plastic strain q , pressure p and high pressure 

phase concentration c on symmetry plane under reloading, for k  30 and 

2 1y y  .  
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reloading, the strain is mostly elastic and an essential increase of plastic strain is only 

found at the higher force. Combination of low pressure and small increment in plastic 

strain, leads to practically unchanged concentration of the high pressure phase when 

dimensionless load F  increases to 3.11. Further force growth results in pronounced 

growth in concentration of the high pressure phase, especially in two-phase region. 

Larger two phase region leads to a wider plateau region, where pressure is between rp  

and dp . One can note that at initial reloading, due to low pressure, reverse PT instead of 

direct PT occurs in some regions. However, once the pressure in most regions is above 

dp , direct PT takes over and quickly propagates due to a relatively large accumulation of 

plastic strain. We also notice that the concentration of the high pressure phase in Fig.10 b 

slightly increases at 0.43r   when load F increases to 3.11, despite the fact that the 

pressure is below dp . This occurs due to the flow of the high pressure phase toward the 

periphery rather than due to direct PT. Such a convective increase in concentration was 

not observed under first loading here and in previous papers13, 21, 22. 

Fig. 11 shows the distribution of shear stress at contact surface under reloading. 

For the case with
2 10.2y y  , direct PT in the center of sample (Fig. 10a) results in the 

reduction of volume and flow of materials towards the center, which reduces the flow 

towards periphery due to recompression. Therefore, under reloading, shear stress in Fig. 

11 (a) gradually declines. However, for the case with 2 1y y  , the rate of direct PT in 

the two-phase region significantly surpasses that at the center (Fig. 10b), which caused 

flow of the material towards the two-phase region rather than the center of sample. 

Therefore, shear stress increases closer to the center due to recompression, and shear 
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stress reduces in the two-phase region due to PTs. Comparing to the shear stress before 

unloading in Fig. 8, shear stress in a wide region significantly reduces after reloading. 
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FIG.11 Distribution of dimensionless shear stress zr on contact surface under reloading, 

for k  30  and 2 1y y   
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2.6     Concluding remarks 

In this paper, strain-induced PTs in a sample in the DAC under loading, 

unloading, and reloading to the same force are investigated. A finite element approach 

and software ABAQUS are utilized for solving a coupled system of equations for large 

plastic deformations and strain-induced PTs.  In contrast to Ref. 22, where case 

d rp p  was treated, here characteristic pressures satisfied the opposite inequality 

d rp p 
 
and values of dp  

and rp were exchanged. PTs were studied for different kinetic 

parameters k  and ratios of the yield strengths of high and low pressure phases. In 

general, under loading slightly more pronounced PT occurs for d rp p  because of 

slightly lower dp . Geometry of the transformed zone is quite different for the case with 

2 10.2y y   that in Ref. 22. PT reaches the contact surface under smaller load, which is 

convenient for probing PTs by surface-based methods (e.g., Raman and optical methods) 

in experiments. However, extraction of the constants dp  
and rp  from experimental 

pressure distribution is more problematic than for the case with d rp p  . Note that at the 

very initial stage of unloading, in the region where dp p , a small increase in 

concentration (i.e., direct PT) is observed. Obtained pressure fields reproduce qualitative 

features observed in some experiments.  

Under unloading, surprising plastic flow and extensive reverse PT are found for 

2 1y y  , which were neglected in experiments. They are caused both by heterogeneous 

stress redistribution and TRIP. This PT requires reconsideration of quantitative values of 

phase concentrations in experiments on the unloaded sample, like in high pressure 

torsion24,25 and ball milling26-29. The reverse PT may potentially be reduced or even 
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avoided if a gasket with specially designed parameters will be used19, which creates 

quasi-homogenous pressure distribution under loading. This assumption will be checked 

in future studies. After reloading, the reverse PT continues followed by intense direct PT. 

However, PT is less pronounced than after initial compression to the same force and 

geometry of transformed zone changes. In particular, the localized transformed band of a 

weaker high pressure phase does not reappear in comparison with the initial compression. 

Also, an increase in concentration at a pressure below dp  is observed, which occurs due 

to convective flow of the high pressure phase toward the periphery rather than due to 

direct PT. In the future, similar work will be performed for a sample under compression 

and torsion in rotational DAC. Since in majority of experiments devoted to study of 

strain-induced PTs in traditional DAC or rotational DAC 6-8,16,17,31 and high pressure 

torsion experiments23-25, there is no special gasket (i.e., the same material is used as the 

sample and gasket), we studied such a case here. However, to receive quasi-

homogeneous pressure distribution, we recently introduced a gasket with specially 

determined parameters for strain-induced PTs as well18, 19, 38. We will study such a case 

numerically in the future. 
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CHAPTER 3. STRAIN-INDUCED PHASE TRANSFORMATIONS UNDER 

HIGH PRESSURE AND LARGE SHEAR IN A ROTATIONAL DIAMOND 

ANVIL CELL: SIMULATION OF LOADING, UNLOADING, AND 

RELOADING  

Modified from a paper published in Computational Materials Science 

Biao Fenga, Valery I. Levitasb,, Oleg M. Zarechnyya 

a Department of Aerospace Engineering, Iowa State University, Ames, Iowa 50011, 

USA 

b Departments of Aerospace Engineering, Mechanical Engineering, and Material 
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Abstract 

Coupled plastic flow and strain-induced phase transformations (PTs) under high 

pressure and large plastic shear in a micron scale sample under loading, unloading, and 

reloading in a rotational diamond anvil cell (RDAC) are studied in detail, utilizing finite 

element approach. A plastic strain-controlled, pressure-dependent kinetic equation, which 

describes strain-induced PTs, is used. The effects of four main material parameters in this 

equation on PTs and plastic flow in RDAC in three-dimensional formulation are 

systematically analyzed. Multiple experimental phenomena are reproduced and 

interpreted, including pressure self-multiplication/demultiplication effects, small 'steps' 

on pressure distribution in the two-phase region, simultaneous occurrences of direct and 

reverse PTs, oscillatory distribution of pressure for weaker high-pressure phase, and a 

thin layer of high-pressure phase on a contact surface. During unloading, unexpected 
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intensive plastic flow and reverse PT are revealed, which change the interpretation of 

experimental results. The effect of unloading and reloading paths on PTs is examined. 

Two types of pressure variations are revealed, which are qualitatively consistent within 

experimental observations for ZnSe and KCl. Obtained results lead to ways of controlling 

PTs by varying compression-torsion paths and can be utilized for the search of new high 

pressure phases, ways to reduce pressure for the synthesis of high pressure phases, and to 

retain them at ambient pressure. 

3.1     Introduction 

 Study of PTs under high pressure and large plastic shear is of interest for various 

fundamental and applied problems. They include: (a) search for new high pressure 

phases, especially superhard phases, in particular, those that can be kept at normal 

pressure and utilized in engineering applications; (b) processes in shear bands in 

geophysics (in particular, during initiation of earthquakes), during penetration of 

projectiles in materials, and shear ignition of energetic materials; (c) technological 

applications (cutting and polishing of Si, Ge, silicon and boron carbides, PTs during ball 

milling and high pressure torsion), see in [1] and references herein. In RDAC, large 

plastic shear deformation can be superposed on high pressures by rotating of one of the 

anvils with respect to another (Fig. 1(a)). Experiments in RDAC have resulted in a 

revealing of numerous exciting phenomena: 1) a remarkable reduction, by a factor of 2-5 

[1-5] and even almost 10 [6] in PT pressure; 2) fast strain-controlled kinetics in which 

time is not significant and strain plays the role of a time-like parameter [1, 7]; 3) an 

appearance of new phases, especially, superhard phases, which would not appear without 

shear straining [4, 8-10]; 4) a reduction (up to zero) in pressure hysteresis [3]; and 5) the 
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replacement of a reversible PT by an irreversible one [11, 12]. These findings are 

rationalized within three-scale theory (nano-, micro, and macroscales) [1], its further 

developments at the micro [7] and macroscales [13, 14], and within numerical 

simulations at the macroscales [13, 14].  

 It was suggested in [1] that the main process for strain-induced transformation is 

nucleation at the defects generated during plastic flow. While there are some analytical 

and numerical solutions for interaction of PTs and plasticity at the nanoscale [1, 15], they 

cannot be utilized in the current study. Indeed, the size of the sample is of the order of 

magnitude of 1 millimeter and there is no way to use nanoscale models and specific 

defects for such a large scale. That is why we developed in [1] a coarse grained 

microscale model (see Eq.(8)), which operates with parameters that can be in principle 

measured in RDAC experiment (phase concentration, pressure, stress tensor, and plastic 

strain). Information about the effect of defects, mechanisms, nanostructure, and nanoscale 

thermodynamics are encoded in the structure and parameters of this equation. That is why 

by solving coupled problems and varying material parameters, we can analyze, predict, 

and interpret experimental results for various classes of materials and transformations, 

see examples in [13, 14]. The current paper applies the same equations but for different 

experimental processes and material parameters. This is important because different 

combinations of material parameters encode different nanoscale mechanisms, defects, 

and nanostructures that lead to different experimental phenomena.  

 Thus, the strain-induced PTs can be characterized in terms of a pressure-

dependent, strain-controlled kinetic Eq. (8), which includes four main parameters: 1) a 

kinetic parameter k which scales the PT rate, 2) the minimum pressure dp  below which 
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direct strain-induced PT does not take place, 3) the maximum pressure rp  above which 

reverse strain-induced PT cannot occur, and 4) the ratio of yield strengths of high (
2y ) 

and low (
1y ) pressure phases. All of these material parameters should be determined 

experimentally, but it has not been done yet because of the complexity and heterogeneity 

on stress and strain fields and the distribution of the phases. Pressure distribution of high-

pressure phase at the contact surface of sample and concentration distribution averaged 

over the sample thickness are experimentally available only [11]. As a consequence, 

theoretical and finite element approaches have become the significant and necessary 

means to investigate the stress and strain fields and distribution of concentration of the 

high pressure phase in the whole sample, and to analyze and interpret experimental 

phenomena. Since PT progress depends on pressure, plastic strain and stress tensors, one 

has to determine these fields in a sample. This is similar to the study of the fields of 

pressure and temperature for pressure-temperature induced PTs, particularly in the shock 

wave. All fields in a sample are very heterogeneous and one needs to understand how to 

extract information from the experiment, i.e., to know these fields in the sample. There is 

currently only one numerical study of the strain-induced PTs in RDAC [14]. Therefore, 

the first objective of this paper is to investigate the effects of the above four parameters in 

the kinetic equation (8) on PTs and plastic flow in RDAC, in particular, parameter k and 

the ratios of the yield strengths of phases. Recently we found [16] that the kinetic 

parameter k significantly affects the appearance of small 'steps' in pressure distribution 

under compression in ordinary DAC, which were found in experiments [3, 4, 8, 10], and 

also essentially changes the geometry of PT zones and rate of PTs. In addition, numerical 

results in [14] obtained for the case d rp p 
 
only, which means that no strain-induced 
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PTs can exist in the pressure range of r dp p p   . Here, we will study the opposite 

case r dp p  , for which both direct and reverse PTs take place in the range r dp p p   . 

For this case, a stationary value of concentration 0 1c   exists at very large plastic 

shears. The fact that such an incomplete PT was observed experimentally for various 

pressure-shear loadings, e.g., during ball milling [17-20] and high pressure torsion [21-

24], confirms that this combination of parameters is realistic and should be studied. In 

particular, we will show that the utilization of condition d rp p   leads to the 

reproduction of pressure self-demultiplication effect for CuI [25], which was not found in 

previous simulations. Also, previous studies failed to reproduce occurrence of a weaker 

high-pressure phase at the contact surface at the center of sample, but we obtained this in 

the current paper by the utilization of d rp p  . What is more, for a stronger high pressure 

phase, “steps” in pressure distributions could not be related directly to rp  or dp  for 

d rp p  , in contrast to results in [14]. 

 In many cases, after complete unloading, high-pressure phase is metastable and 

can exist at ambient conditions. However, since distribution of all parameters in a sample 

treated in RDAC is very heterogeneous, reduction in axial force may lead to essential 

plastic deformations and strain-induced reverse PT, which has never been studied before 

for RDAC. In the most experimental studies (with exception for in situ experiments), 

concentration of high pressure phases is measured after complete unloading after ball 

milling [17-20] and high pressure torsion [21-24] but is related to the loading process.  

This includes a strong presumption that there is no plastic deformation and no change in 

the phase concentration during the unloading. On the contrary, as we will show, 
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unloading is accompanied in many cases by intense plastic flow and clear reverse PT. 

Since one of the goals of study of materials in RDAC is to preserve metastable high 

pressure phase, these processes should be taken into account, or better yet, avoided in the 

designing and interpretation of the experiments. In addition, PTs are also influenced by 

unloading paths. Two different paths will be discussed in this paper.  

Finally, reloading (which also was not studied previously for RDAC) is investigated to 

explore new pressure-plastic strain trajectories and PT progress for them. There were two 

interesting experimental phenomena: after slight release on the compressive force 

followed by torsion, pressure for weaker [8] (stronger [3]) high-pressure phase increases 

(decreases) at the center of sample on contact surface, and reduces (grows) in the 

periphery. Such a reloading path will be modeled in this paper.  

3.2 Problem formulation 

To obtain generic results and to be able to compare with our previous results for RDAC 

[14] and for traditional DAC [13], we consider the same simplest isotropic, perfectly 

plastic model from [14]. The applicability of the perfectly plastic and isotropic model 

with the yield strength, which is independent of the deformation history,  for monotonous 

loading is justified in [26] for various classes of materials (metals, rocks, powders, etc.) 

starting with accumulated plastic strains q>0.6÷1. This was done both for normal and 

high pressure and the case without PTs. Further confirmations for NaCl and stainless 

steel were found in experiments with RDAC in [4]. Since our objective is to simulate 

strain-induced PTs rather than just plastic flow and there is no available experimental 

data on such transformations, there is no reason to utilize more sophisticated models for 

plastic straining with the simplest model for PT. We assume also small elastic strains, 
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which limits pressure to the value of 0.1 K (i.e., in the range of 10-20 GPa). One could 

avoid these assumptions, if it would be necessary. However, this paper is among very few 

first numerical studies of strain-induced PTs in RDAC and we would like to obtain 

results that are generic for a wide class of materials. With any sophistication, the generic 

character of the obtained results will be lost while we would gain the secondary effects 

only. Complete system of equations is enumerated below. Subscripts e, t, and p mean 

elastic, transformational, and plastic. 

 
(a) 

 
(b) 

 
(c) 

FIG. 1. (a) A RDAC schematics;   is rotation angle of upper diamond anvil with respect 

to the lower one; (b) a quarter of sample in initial undeformed state in a cylindrical 

coordinate system rz ; and (c) boundary conditions in the deformed 

configuration, in particular, complete cohesion is assumed on the contact surface 

between sample and diamond anvil. 
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Decomposition of deformation rate d  into elastic, transformational, and plastic parts: 

e t p 


  d I d .                                                                    (1) 

Hooke's law for pressure p and deviatoric part devs T  of the true stress tensor T: 

                      
0 ; 2

3

rr zz

e ep K Gdev
  


 

    s ε .                                                  

(2) 

Transformation volumetric strain: 

ctt   .                                                                  (3) 

Von Mises yield condition for two-phase mixture: 

   
0.5

1 2

3
: 1

2
i y y yc c c   

 
     
 

s s .                                                        (4) 

Plastic flow rule in the plastic region: 

                      cyi                    
p d s ;     λ ≥ 0 

 
 ;        (5) 

in the elastic region: 

 cyi                         0p d .                                                  (6) 

Momentum balance equation: 

0. T                                                               (7) 

Strain-controlled kinetics for phase transformations: 
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Here q is the accumulated plastic strain, 1/2(2 / 3 : )p pq  d d ; 
dd

h

d

d
pp

pp
p








  and 

rr

h

r

r
pp

pp
p








  are dimensionless characteristic pressures for direct and reverse PT; I is the 

second-rank unit tensor; 
0e  and t are the elastic and transformation volumetric strains 

for complete PT, respectively; e


 and s


 is the objective Jaumann time derivative of the 

elastic strain and deviatoric stress; K  and G  are the bulk and shear moduli, respectively; 

i
 is the stress intensity or effective stress; λ is a parameter which is determined 

iteratively in order to satisfy the yield condition (4); H  is the Heaviside step function; 

and d

hp  and r

hp  are the pressures for direct and reverse PTs under hydrostatic loading, 

respectively.  

Geometry and boundary conditions for the problems under study are presented in 

Fig. 1. Note that a typical radius if an anvil R is 200 – 500 microns and thickness of a 

sample under the load is 10 -50 microns; however, problem formulation and solution are 

independent of the absolute size of the system. While RDAC will be considered to have 

axial symmetry, loading under compression and torsion is three-dimensional. Thus, the 

problem should be classified as the generalized axisymmetric problem, and therefore 

cylindrical coordinate system rz  is utilized. Change in the diamond anvils geometry is 

negligible under the maximum pressure mentioned above (see justification in [27-29]), 

and rigid anvils will be utilized. Two loading steps are included: first, the sample is 

subjected to rising axial compressive force P until the final value Pf, and then the one of 

the diamond anvils is gradually twisted from rotation angle 0   to the final f   

with respect to another. Due to symmetry with respect to 0z   plane, a quarter of a 
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sample (shown in Figs. 1 (b) and (c)) participates in simulations only. The twisting 

displacement 0u   at the symmetry plane is prescribed, and the half of the rotation 

angle 2  of an upper anvil is applied with respect to this plane. When pressure exceeds 

~
12 y , asperities of the diamond penetrate into a deformed sample, which leads to a 

complete cohesion between rigid diamond and sample (similar to [14] and [30]).  

During unloading, which has never been studied before for RDAC, two different 

paths will be studied: 1) the axial force P is gradually released to a small value at the 

fixed rotation angle 
f ; and 2) the torque about z direction applied to a diamond is first 

reduced down to zero at a constant axial force Pf followed by the release of axial force P. 

During reloading, there are also two paths: 1) after unloading according to the first path 

mentioned above, the axial force P grows from the small value to the final one at the 

fixed rotation angle 
f , and then diamond anvil is subjected to further torsion with 

addition rotation angle a  at this final axial force; and 2) after slight release in the axial 

compressive force during unloading process, one of anvil is subjected to further torsion. 

Such a program was experimentally investigated for weaker high pressure phase for ZnSe 

in [8] and for stronger high pressure phase for KCl in [3], respectively.  

 The FEM software ABAQUS [32] is utilized for the solution of the above-

formulated generalized axisymmetric problem. To consider the strain-controlled kinetic 

Eq. (8), ABAQUS subroutines USDFLD and HETVAL are implemented, in which 

transformation strain is modeled through the thermal strain, and concentration c is treated 

as temperature. In the dimensionless form, except for shear stresses (which are 

normalized by yield shear stress 1 1 3y y  ), all stress-related parameters (e.g., 
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pressure p) are normalized by 
1y ; the dimensionless force F is the axial force P 

normalized by the total initial contact area of sample. For precise comparison with the 

results for d rp p   in [14], we assume dimensionless 6.375dp   and 6.75rp   in this 

paper (i.e., just switch values 6.75dp  and 6.375rp  used in [14]) and keep other 

material parameters exactly same as in [14]: 11.25d

h
p  , 1.875r

h
p  , Young modulus 

162.5E  , Poison's ratio 0.3v  , and volumetric transformation strain 0.1t   .  

3.3     Phase transformations under high pressure and large shear loading 

 We will discuss PTs under torsion at the constant axial compressive force 

4.44F  , for weaker, equal-strength, and stronger high-pressure phases, respectively. 

Previous studies [14] focusing on the case with k=1 and d rp p   successfully described a 

number of experimental phenomena but fail to explain some of them due to limited 

choice of material parameters. In this section, the primary goal is to investigate effects of 

some parameters in Eq. (8) on PTs and plastic flow, and explain those experimental 

phenomena, which could not be reproduced before. Specifically, by prescribing k=1, 5, 

and 10 respectively, the effects of kinetic parameter k will be investigated; by prescribing 

2 1y y   0.2, 1, and 5, the weaker, equal-strength, and stronger high-pressure phase will 

be considered; and by prescribing d rp p   and in comparison with the case d rp p   in 

[14], effects of characteristic pressure parameters will be taken into account. For all 

cases, during torsion, the material’s flow from the center to outside causes significant 

reduction in the thickness of sample, which accelerates the plastic deformation and thus 

provides an additional driving force for PTs. 
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Weaker high-pressure phase 

Evolution of concentration of a weaker  2 10.2y y   high-pressure phase c with 

rising rotational angle   is shown in Fig. 2, under the constant compressive axial force 

F=4.44 for kinetic parameter k=1, 5, and 10. Results for  =0 correspond to the end of 

compression stage, which already leads to PT. As shown in Fig. 2(a), PTs start at the 

center of sample on the symmetry plane rather than at contact surface, because there 

pressure first exceeds dp  above which direct PTs could occur. For k=5 and 10, while PT 

also initiates at the center, then the major PT progress shifts from the symmetry plane to 

contact surface (shown in Figs. 2 (b) and (c)), at 0  . Both the softening of materials 

during PTs and the transformation-induced volumetric reduction cause localizations of 

strains and concentrations c in some regions, which induce the irregular distributions of 

all of the fields. At the initial stage of torsion, PT zones are mostly localized within the 

thin and long shear and PT bands, which are clamped by stronger low-pressure phase. 

Consequently, with the rising rotation angle  , plastic flow mostly appears in the bands 

due to lower strength and PT propagates inside of them. From Fig. 2, one notes that with 

growth of the kinetic parameter k, the rate of PTs increases and the geometry of PT zones 

evidently changes. Under compression, total amount of high pressure phase is 

surprisingly larger for k=5 than for k=10, while for all stages of torsion it is the opposite. 

Fig. 2 also shows a fully transformed high-pressure phase appears on the contact surface 

in the center of sample and it could be detected by X-ray or surface-based (Raman or 

optical) method. In contrast, PTs in [14] with d rp p   and k=1 almost does not appear 

there, even for a very large rotation angle because of very small plastic strains. This 

prevents observations of the high pressure phase by surface-based methods. Direct PT 
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occurs at lower pressure than in [14], because the threshold value dp  for direct PT is 

accepted lower in this paper than that in [14]. After PT starts, volumetric transformation 

strain generates significant internal stresses, which in combination with external 

nonhydrostatic stresses cause additional plastic straining called transformation-induced 

plasticity (TRIP) [1, 11, 33]. TRIP leads to further PTs thus providing an additional 

driving force for PTs and mechanochemical feedback.  

 

  

(a)                                                          (b) 

 

                                      

(c) 

FIG. 2. Evolution of concentration of a weaker  2 10.2y y   high-pressure phase c with 

increasing rotation angle   under a constant compressive axial force F=4.44, for k=1, 5, 

and 10. Part of the sample with 0.72r R   (Fig. 1 (b)) is shown.  
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                                 (a)                                                                    (b) 

        

                                 (c)                                                                    (d) 

FIG. 3.   Distributions of dimensionless pressure p and high-pressure phase concentration 

c at the contact surface during torsion under constant axial force F for 

2 10.2y y  and k=1 (a) and 10 (b). Experimental pressure distributions on the 

contact surface of the sample for CuI (adopted form in [25]) (c) and ZnSe 

(adopted form in [8]) (d), respectively. Sold line 1 is for compression without 

torsion and dashed line 2 is after torsion under the fixed axial force. Arrows 

indicate visible interface between low- and high-pressure phases. 
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(b) 

FIG. 4. Distributions of shear stresses (a) zr  and (b) z  at the contact surface during 

torsion under constant axial force F for k=10, 2 10.2y y  , and different rotation 

angles of an anvil. 

It is worth to mention that the PT from semiconducting Si I to weaker metallic Si II under 

compression in diamond anvils [34] was found in a thin contact layer only but not in the 
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bulk, which agrees with our results in Figs. 2 (a) and (b) for k=5 and 10, and 0  . This 

coincidence also confirms the possibility of strain-induced (rather than pressure-induced) 

PT under compression without torsion. From Fig. 2(c), high pressure phase gradually 

propagates from center to periphery which is also accompanied by disappearance of PT 

band during increase of the rotational angle from 0.09 to 0.64. Both direct and reverse 

PTs occur simultaneously but in different regions.  

 The oscillatory pressure distribution at the contact surface for weaker high 

pressure phase in Fig. 3 is not a numerical error because it is caused by multiple 

instabilities due to material softening and TRIP during PT. Such an irregular pressure 

field on the contact surface was experimentally observed for CuI [25] and ZnSe [8] (Figs. 

3 (c) and (d)). For k=1, pressure at the center evidently increases at initial torsion 

0.2  . However, pressure at the later stage of torsion greatly reduces at the center 

because of both appearance of a weaker phase on the contact surface and volumetric 

reduction during PT at the later stage. Such a pressure reduction was called as "pressure 

self-demultiplication" and was experimentally observed for CuI [25] (Fig. 3(c)). It was 

not found for the case d rp p   in [14] due to absence of weaker phase on the contact 

surface in the center of a sample. For k=10, pressure in the center grows during the whole 

process of torsion, which corresponds to experiments in ZnSe [8] (Fig. 3(d)). This 

happens because PT in the center of sample are completed at the initial stage of torsion, 

and thus could not occur any more at the later stage (see Fig. 2(c)), which does not lead to 

further reductions of strength on contact surface and volume in the center. From Fig. 4, 

one notes that distribution of shear stresses
zr  or z  is also oscillatory due to strain 
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softening and TRIP during PT, and their magnitudes in the center  0.3r R   are much 

smaller than those at the periphery caused by reduction of material strength. At the 

periphery, where there is no PTs due to low pressure, shear stresses are almost 

homogeneously distributed and decrease in the radial shear stress 
zr  leads to increase in 

torsional z  to keep 2 2

1zr z y      . 

          

                           (a)                                                                    (b)     

                                 

                                       (c)                                                               

FIG. 5. Evolution of concentration of high-pressure phase c with increasing rotation angle 

  under a constant compressive axial force F=4.44 for k=1, 5, and 10; 2 1y y   

and 0.72r R  . 
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(b) 

FIG. 6. Distributions of dimensionless pressure p and high-pressure phase concentration c 

at the contact surface during torsion under constant axial force F for k=1 and 10 

and 2 1y y  .  
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(b) 

FIG. 7. Distributions of shear stresses zr  at the contact surface during torsion under 

constant axial force F for k=1 and 10 and 2 1y y  . 
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Equal-strengths phases 

At the initial stage of torsion, with different kinetic parameters k, the geometry of PT 

zone is also quite different. For example, PT does not occur on the contact surface in the 

center of sample for k=1, but it occurs for k=5 and 10. At the later stage of torsion, the 

geometries of PT zones for k=5 and 10 are very similar because PT completes in the 

entire region with pressure above rp . In comparison with case with
2 10.2y y  , the 

localization of high-pressure phase concentration c obviously reduces and oscillatory 

distributions on pressure and shear stress almost disappear due to absence of material 

softening during PT. At the same time, geometry of PT zones, the distributions of 

pressure and shear stress are very similar to those for d rp p   and k=1 in [14]. 

Fig. 6 shows the distributions of dimensionless pressure p and high-pressure 

phase concentration c at constant axial force F=4.44. One can note that during 

compression ( 0  ), the amount of high pressure phase in the center of sample for k=10 

is much larger than the one for k=1, which leads to larger volumetric reduction and 

therefore lower pressure for k=10. In the PT zone, pressure grows in the center of sample 

with rising rotation angle, because a simplified equilibrium1 / 2 /zrdp dr h  is 

applicable in this case and both 
zr  and z  (and, consequently, the resultant shear stress 

2 2

zr z    ) at the center of sample gradually increases (similar to the case for 

stronger phase in Fig. 14), while the thickness h reduces. In addition, since shear stress 

 
1y  at the periphery, the radial shear stress 

zr  at the periphery reduces during torsion 

(from 1y  for 0  ) with rising torsional shear stress z . With growth of k, distribution 



www.manaraa.com

56 

 

 

of shear stresses in the center of sample becomes obviously different (Fig. 7), especially 

at the initial stages of torsion, because there PT occurs and rate of PT strongly depends 

on k. During compression ( 0  ), materials flows to the center for k=10 because of fast 

reduction in volume during direct PT, which compensates the flow to the periphery due 

to compression, and as a result, shear stress 
zr  is much smaller and change sign in the 

PT region for k=10, in contrast to the case with k=1 with flow from the center. 

Stronger high-pressure phase 

     

                      (a)                                                              (b) 

                                 

                            (c)                                                               

FIG. 8. Concentration of high-pressure phase c with increasing rotation angle   under a 

constant compressive axial force F=4.44, for k=1, 5, and 10, and 2 15y y  . 
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Qualitatively, the character of evolution of distribution on concentration c of stronger 

high-pressure phase  2 15y y   with rising rotational angle in Fig. 8 is similar to the 

case with equal strengths of the phases  2 1y y   and one could note that: 1) the rate of 

PTs for k=1 is lower than that for k=5 and 10, which causes that there is a large two-

phases (0<c<1) region for k=1; 2) at the later stage of torsion, PT for k=5 and 10 

completes in the region with pressure rp p  and geometries of PT zones are quite 

similar; 3) after twisting diamond with 0.94 radians, further torsion does not practically 

change the concentration c; and 4) thickness of sample evidently reduces during torsion. 

In comparison with [14], the rate of PTs in the current paper is slightly slower, and 

geometry of the border zone between fully transformed and untransformed materials is 

obviously different because higher value of rp  is accepted in this paper and both direct 

and reverse PTs could occur at d rp p p    in the current model. From Figs. 8 (b) and 

(c), there is very sharp interface between two phases, which leads to the jump in pressure 

and shear stresses due to a sudden change in material strength. Sharpening of the two-

phase region (interface) with increasing rotation angle is observed in experiments for KCl 

[3]. 

Fig. 9 shows the distributions of dimensionless pressure p and concentration c of stronger 

high pressure phase on contact surface for k=1, 5, and 10. In the PT region, pressure 

increases significantly despite of the volume reduction due to PT, which is 

experimentally observed as pressure self-multiplication effect [3, 4, 11, 35]. The 

reduction of thickness of sample during 
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(c) 

FIG. 9. Distributions of dimensionless pressure p and high-pressure phase concentration c 

at the contact surface during torsion under constant axial force F for k=1, 5, and 

10, and 2 15y y  .  

 torsion compensates the transformation-induced volume reduction, and higher yield 

strength for high pressure phase results in a growth of friction stress (see Fig. 10), and 

consequently leads to an increase in pressure. The growth of pressure in the center of 

sample during PT provides a positive driving force to accelerate direct PT kinetics, but 
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leads to reduction of pressure in the periphery due to a fixed constant axial force. Then, in 

the region 0.42 0.48r R  , pressure drops from the value above dp  to the one much 

below dp  and leads to the reverse PTs, which is consistent with experimental observation 

for KCl [3]: both direct and reverse PTs could occur simultaneously but in different 

regions. At the initial stage of torsion, concentration of the high pressure phase increases 

significantly and therefore pressure grows quickly as well. For example, during increase 

in the rotation angle from 0 to 0.38 radians, pressure in the center for k=10 increases by 

more than 2 times. At the later stages of torsion, with rising rotation angle, PT does not 

proceed visibly, and pressure also has almost no change. For example, when   increase 

from 0.94 to 1.10 radians, concentration of high pressure phase and pressure almost do 

not change for k=1, 5, and 10 in Fig. 9. This is consistent with experimental observation 

[4]: without PTs, pressure distribution on contact surface is independent on rotational 

angle. Small "steps" in pressure distribution, which are localized near the two-phases 

region, are found in our simulations, similar to those in experiments for KCl and fullerene 

C60 [3, 4, 35]. It is also found that pressure steps for k=1, both in this paper (Fig. 9(a)) and 

[14], are not as obvious as the steps in Figs. 9(b), and (c) for a larger k. Interface between 

PT and no-PT zones is much sharper for the case with k=5 and 10 than that for k=1. 

However, in contrast to the cases in [14] for d rp p  with torsion and in [31] for 

d rp p  without torsion, these steps are not close to characteristic pressures dp and rp , 

which does not allow them to be determined experimentally from the pressure 

distribution. Also, there is a region with large pressure gradient and change in pressure, 

which includes a quite sharp interface between low and high pressure phases.  
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(a) 

 
(b) 

FIG. 10.  Distributions of shear stresses (a) zr  and (b) z at the contact surface under 

constant axial force F for k=1 and 2 15y y  for different rotation angles of an 

anvil.  

As in previous cases, both radial shear stress zr  and torsional shear stress 
z  on 

the contact surface are almost homogenous in nontransformed regions. Also, the increase 

in z   is accompanied by a decrease in zr  to keep a constant resultant shear stress 

2 2

1zr z y      . In the transformed region, radial and torsional shear stresses  grow 
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because of the increase of material strength, and the increase in shear stress 
z  causes 

the growth of torque. Both radial and torsional shear stresses drop drastically at the sharp 

interface. In comparison with the case d rp p   in [14], radial shear stress distribution at 

the interface of transformed and untransformed region in Fig. 10(a) looks slightly 

different, due to a different geometry of PT zone (see Fig. 8(a)) 

3.4 Phase transformations under unloading 

Except for in-situ study, descriptions of PT process under pressure and shear are 

based on the results of measurements after complete unloading [17-23], and therefore 

they are based on a strong assumption that there is no PT during unloading. Evolution of 

concentration of high-pressure phase during the reduction of applied force and torque 

down to zero was never studied in experiments and simulations. In this section, the 

process of releasing axial force and torque will be investigated numerically, and the 

effects of the ratio of the yield strength of phases, kinetic parameter k, and different 

unloading paths on PTs will be elucidated. For all of cases in this section, unloading 

initiates from the last step of loading process in section III (See Figs. 2, 5, and 8); 

specifically, (a) for 
2 10.2y y  , unloading initiates at rotational angle 0.84  ; (b) for 

2 1y y  , at 1.02  ; and (c) for 
2 15y y  , at 1.10  . Two unloading paths are 

considered: (a) axial force is reduced from F=4.44 to F=1.29 at a fixed rotation angle and 

(b) first torque is reduced to zero and then axial force is reduced from F=4.44 to F=1.29. 

 From Fig. 11, one can note that with the reduction in ratios 2 1y y  , reverse PT 

becomes obvious during the release of the axial load; unlike the evolution of direct PT 

during loading, reverse PT under unloading progresses from contact surface to symmetry 

plane and from periphery to center because reverse PT initiates where pressure is below 
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rp in the presence of plastic flow. In comparison to the process of unloading in ordinary 

DAC [31], results are quite different, because of reduction of torque in spite of constant 

rotational angle in RDAC. 

  

                      (a)                                                                             (b) 

                                           

                            (c)                                                               

FIG. 11. Concentration of high-pressure phase c with decreasing axial compressive force 

F under a constant rotation angle : (a) 0.84, (b) 1.02, (c), 1.10, for 

2 1y y  0.2, 1, and 5, and k=5. 

 From Fig. 12, the rate of pressure reduction is faster in the periphery ( 0.6r R  ) 

than that in the central region ( 0.5r R  ) of sample because reverse PT leads to increase 

in volume and therefore reduces the rate of reduction in pressure. For example, 

combining Figs. 11 and 12, pressure reduces much slower at the center ( 0.5r R  ) when 

axial force releases from 2.80 to 1.29 than at the initial stage of unloading the axial force, 

because PT mostly occurs at the later stage. During the unloading, evident plastic flow 

appears in the whole sample especially in the two-phase region. The rate of plastic flow is 
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faster at the later stage of unloading than at the initial stage, which differs from the case 

for unloading after compression in the ordinary DAC [31]. Torque and shear stress 
z , 

which, however, significantly reduce during axial force release in RDAC under fixed 

rotation angle, play a significant role in plastic flow during unloading in RDAC. In [31] 

for DAC, plastic flow at the later stage of unloading become not so obvious as at initial 

stage, and in some cases there is a quite large region at center of a sample without change 

in plastic strain at all. 

 

(a)                                                                     (b) 

 

FIG. 12. Distributions of pressure p, high-pressure phase concentration c, and the 

increment in accumulated plastic strain q  after starting unloading, under 

unloading at a fixed rotation angle, for 2 1y y   0.2 and 1, and k=5.  

 Fig. 13 shows distribution of the concentration of lower-strength high-pressure 

phase c with different kinetic parameters k under release of the axial force at a fixed 
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rotational angle. With the growth of k, the rate of the reverse PT increases. Change in 

concentration for k=1 is not very obvious, but it is for k=10. One can find that in addition 

to growth in k itself, another important reason for rising rate of reverse PT is the growing 

rate of change in plastic flow: by combination of Figs. 12(a) and 14, change in 

accumulated plastic strain is much larger for k=5 than that for k=1, which provides a 

stronger driving force for reverse PT. Also, TRIP strongly affects the PTs due to both 

transformation strain and mismatch of strengths. In addition, reverse PT reduces the rate 

of reduction in pressure under unloading by an increase in volume, but unlike the case in 

Fig. 12(a), pressure curves in Fig. 14 are almost parallel in the whole sample during 

unloading due to relatively low reverse PT increment. 

  

                      (a)                                                                                   (b) 

                               

                            (c)                                                               

FIG.13. Concentration of high-pressure phase c with decreasing axial compressive force 

F under a constant rotation angle 0.84, for 2 10.2y y  , and k=1, 5 and 10.  
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 Different compared to the previous unloading path, the process of unloading in 

Fig. 15 consists of two steps: first, torque is released to zero at a fixed axial force F=4.44, 

and after that the axial force F is released. When comparing two types of unloading paths 

in Figs. 13(c) and 15, we find that the rate of reverse PT in Fig. 15 is slower. During the 

release of the moment, reverse PT almost does not occur due to high pressure in the high 

pressure phase and then changes of accumulated plastic strain become smaller during 

releasing axial force than the case in Fig. 12(c). These results can be useful in designing 

unloading program and may help, for example, to preserve   phase of iron after large 

plastic shear (see [36]). 

 

FIG. 14. Distributions of pressure p, high-pressure phase concentration c, and the 

increment in accumulated plastic strain q after starting unloading, under 

unloading at a fixed rotation angle, for 2 10.2y y   and k=1.  
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FIG. 15. Concentration of high-pressure phase c under unloading. The first bar is the 

concentration of high pressure phase after complete moment release at a fixed 

axial force F=4.44, and from the second bar to the fifth bar, the axial force F 

reduces from 4.44 to 1.29.  

3.5     Phase transformations under reloading 

In this section, we will discuss the reloading process to explore new pressure-

plastic strain paths for strain-induced PTs in RDAC, and to interpret experimental 

phenomena. Two kinds of reloading paths were carried out. First, after unloading to a low 

load F=1.29 at the last step in Fig. 11(a), the diamond anvil cell is subjected to rising 

axial force to the final value at a fixed angle and then is further twisted by an additional 

angle a  at the fixed final axial force. Second, after the final loading in section III 

(Figs. 2(b), 5(b), and 8(b)), the axial force is slightly released at a fixed rotational angle. 

After that, the diamond anvil is subjected to further torsion without changes in the axial 

force. In comparison with Fig. 16(a), after re-increasing axial force to 4.44, without 

additional twisting ( 0a  ) in Fig. 16(b), PT zone still does not return to the case 

before loading. Therefore reverse PT is not completely recoverable during this process; 

but once a small rotational angle a  is applied, geometry of PTs is very similar to the 

case with loading in Fig. 16(a) only. In addition, further increasing in rotation angle does 

not essentially boost direct PT because PT has almost completed in the regions where 

pressure is larger than dp . A possible way to stimulate direct PT is to raise the axial force 
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F which could increase the area where pressure is above dp , and Fig. 16(c) shows that 

after increasing the axial force F to 4.91, extra torsion makes high-pressure phase to 

propagate to the periphery. 

    

                      (a)                                                              (b) 

                                       

                            (c)         

FIG. 16. Concentration of high-pressure phase c for 2 10.2y y   ,  and k= 5. (a) The 

first bar is the same as in the last step in Fig. 2(b) (i.e., after rotation of an anvil by 

0.84   at F=4.44) and then diamond anvil is subjected to an additional torsion 

a  at constant force F=4.44; (b) the first bar is after an increase in axial force F 

to 4.44 from last step of Fig. 13(b) (i.e., after unloading down to F=1.28 at the 

fixed  =0.84), and then further torsion 
a  is applied at the fixed F=4.44; (c) 

the first bar is after an increase in axial force F to 4.91 from last step of Fig. 

13(b), and then an additional torsion is applied at the fixed F=4.91. 

 

 After loading process described in the last step in Section III (i.e., torsion at the 

fixed axial force), the axial force F is slightly released from 4.44 to 3.68 at fixed   and 

then diamond anvil is twisted with additional angle a  (Fig. 17). One can note that with 
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growth of
a , obvious reverse PT occurs for 

2 1y y   0.2, 1 and 5; with growth of the 

yield strength of high pressure phase, the rate of reverse PT reduces. For weaker high 

pressure phase in Fig. 18(a), the pressure at the contact surface after extra torsion 

increases in the center of sample  0.3r R   where a small amount of reverse PT occurs 

and leads to slight increase in the volume, and pressure reduces at the periphery 

 0.5r R  , both are qualitatively consistent with the experimental results for ZnSe [8] 

(see Fig. 18(c)). However, for stronger high pressure phase in Fig. 18(b), the pressure 

goes down in the center  0.4r R  ; in most region of phase pressure is still very high 

and above rp , which limits the occurrence of reverse PT, and obvious reverse PT only 

take place in the very small two-phases region. Due to a fixed axial force during extra 

torsion, decrease of pressure is found on the inclined surface C'B' in Fig. 1(c). Reduction 

in pressure for a similar process for stronger high pressure phase corresponds to the 

experimental observation for KCl in [3]. 
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                      (a)                                                              (b) 

                         

                            (c)             

FIG. 17. Concentration of high-pressure phase c, for 2 1y y  0.2, 1, 5 and k= 5. 

Following by the last step in Fig. 2(b), Fig. 5(b) and Fig. 8(b), respectively, the 

first bars for (a), (b) and (c) are for the case when the axial force F is released to 

3.68 at the fixed rotation angle, and the next bars correspond to additional torsion 

of a diamond anvil at the constant axial force F=3.68.  
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(a)                                                                (b) 

(b)  

   
(c) 

 

FIG. 18. Distributions of dimensionless pressure p and high-pressure phase concentration 

c at the contact surface for weaker (a) and stronger (b) high pressure phases, 

corresponding to reloading process in Figs.17 (a) and (c), respectively. Solid line 

1 is for the case after unloading axial force F down to 3.86, without additional 

rotation, and other lines correspond to increasing additional rotation angle a . 

(c) Experimental distributions of pressure p at the contact surface of the sample 

for ZnSe [8]. Solid line 1 corresponds to a slight reduction of the axial force and 

dashed line 2 to further torsion under a constant axial force.  
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3.6     Concluding remarks 

Coupled plastic flow and strain-induced PTs under high pressure and large plastic 

shear in a sample under various types of loading, unloading, and reloading in a RDAC 

are studied in detail. FEM and software ABAQUS have been used. The effect of four 

main parameters in the pressure-dependent, strain-controlled kinetic Eq.(8) is elucidated, 

which includes: 1) a parameter k which scales the PT rate, 2) the minimum pressure dp  

below which direct strain-induced PT is impossible, 3) the maximum pressure rp  above 

which reverse strain-induced PT cannot occur, and 4) the ratio 
2 1y y   of yield strengths 

of high and low pressure phases. Multiple nontrivial experimental phenomena are 

reproduced and interpreted, including pressure self-multiplication and demultiplication 

effects, small 'steps' on pressure distribution on the contact surface in the two-phase 

region, simultaneous occurrences of direct and reverse PTs, oscillatory distribution of 

pressure for weaker high-pressure phase, localization of a weaker high-pressure phase at 

a contact surface, as well as some types of behaviors under complex 

loading/unloading/reloading processes. During unloading, unexpected essential plastic 

flow and reverse PT are revealed, which change interpretation of the experimental results. 

Obtained results allow better understanding of the experimental phenomena occurring in 

RDAC, possibility of extracting experimental information from the heterogeneous fields 

in a sample, and ways of controlling PTs by controlling pressure-plastic strain paths. 

They also can be utilized for the search of new high pressure phases, ways to reduce 

pressure for synthesis of high pressure phases and to retain them at ambient pressure. 

Future work will be directed toward taking into account of contact sliding between 

sample and diamond, consideration of a sample-gasket system, and combining results of 
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simulations and experiments to determine all parameters and functions for PT and plastic 

flow in specific materials. Similar numerical approach can be applied to study strain-

induced PTs during ball milling [17-20], high pressure torsion [21-23], and other 

processes. Current FEM approaches to high pressure torsion [37-42], and twist [43] or 

spiral [44, 45] extrusion consider plastic flow only, while these processing methods are 

used also [21-23] or can be used for strain-induced PTs.  
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CHAPTER 4. PLASTIC FLOWS AND PHASE TRANSFORMATIONS IN 

MATERIALS UNDER COMPRESSION IN DIAMOND ANVIL CELL: 

EFFECT OF CONTACT SLIDING  

Modified from a paper published in Journal of Applied Physics 
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Abstract 

Modeling of coupled plastic flows and strain-induced phase transformations (PTs) 

under high pressure in a diamond anvil cell (DAC) is performed with the focus on the 

effect of the contact sliding between sample and anvils. Finite element software 

ABAQUS is utilized and a combination of Coulomb friction and plastic friction is 

considered. Results are obtained for PTs to weaker, equal-strength, and stronger high 

pressure phases, using different scaling parameters in a strain-controlled kinetic equation, 

and with various friction coefficients.  Compared to the model with cohesion, artificial 

shear banding near the constant surface is eliminated. Sliding and the reduction in friction 

coefficient intensify radial plastic flow in the entire sample (excluding a narrow region 

near the contact surface) and a reduction in thickness. A reduction in the friction 

coefficient to 0.1 intensifies sliding and increases pressure in the central region. Increases 

in both plastic strain and pressure lead to intensification of strain-induced PT. The effect 
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of self-locking of sliding is revealed. Multiple experimental phenomena are reproduced 

and interpreted. Thus, plastic flow and PT can be controlled by controlling friction.  

4.1 Introduction 

The majority of studies of material behavior and PTs under high static pressure 

are performed in a DAC. A DAC allows an in-situ study of PTs under high pressure 

using advanced diagnostics such as optical, Raman, and X-ray techniques1-4. Pressure-

induced PTs are usually studied within a hydrostatic media. In contrast, strain-induced 

PTs under high pressure are studied without hydrostatic media, by superposing large 

plastic shear deformations in a rotational DAC5-12. They may occur under much lower 

pressure and sometimes lead to new phases that could not be obtained under hydrostatic 

conditions. While pressure-induced PTs start by nucleation at pre-existing defects 

(pressure and stress concentrators), strain-induced PTs occur by nucleation at new defects 

that are continuously generated during the plastic flow13. Quite often, especially at very 

high pressures, PTs under compression in a traditional DAC are studied without 

hydrostatic media in the process of large plastic deformations due to a reduction of the 

sample thickness. As stated in Ref. 10, such PTs should also be considered as strain-

induced rather than pressure-induced PTs. This is not just a terminological difference, as 

strain-induced PTs occur by a different mechanism and require completely different 

thermodynamic and kinetic descriptions, as well as an interpretation of experimental 

phenomena. A multiscale theory10 for high-pressure mechanochemistry was proposed, in 

which strain-induced PTs could be characterized by a strain-controlled (rather than time-

controlled), pressure-dependent kinetic equation (see Eq. (8)). The only difference 

between PTs under compression and shear in a rotational DAC and compression in a 
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traditional DAC is the pressure-plastic strain trajectory for each material point of the 

sample10, 14-16. Due to highly heterogeneous fields of stresses and strains and complex 

distributions on phases, the pressure and concentration of high pressure phases along the 

radius of the sample on a contact surface are experimentally available only11. As a result, 

theoretical and finite-element methods have been developed and applied for investigation 

of the evolution of stresses, strains, and concentration of phases in the entire sample 

during plastic flow and PTs with the growth of external force10, 14, 15, 17, 18. It is a coupled 

problem of mechanics and PT with a large deformation, which thus leads to high 

complexity in simulations using FEM software.  

 It is necessary to note that without PTs (and, in some cases, with PTs; see Refs. 

10, 15), pressure p distribution within a sample along the radius r is determined by a 

simplified equilibrium equation 
2


c

zrdp

dr h
, where c

zr  is the radial frictional shear stress 

at the contact surface with an anvil, and h is the current thickness of the sample. Without 

friction, pressure is constant along the radius and there is no way to increase it to high 

value, namely above material hardness. In contrast, if the maximum possible friction 

stress is equal to the yield strength in shear 
y  and there is a large ratio of the sample 

radius R to the thickness, then pressure grows linearly from the periphery to the center 

and can reach several megabars in magnitude. Thus, the entire field of high pressure 

physics and material science is based on the ability to create frictional resistance to the 

radial plastic flow in the thin sample during its compression. 

 At the same time, though the first numerical results15-19 were successful in 

interpreting multiple experimental phenomena, the simplest model was considered based 
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on a strong assumption: there is no slipping on the contact surface between the sample 

and the diamond anvil. As a result, a real large-sliding contact problem was degraded into 

a problem under zero displacements along the boundary. Further, such a complete 

cohesion assumption on the contact surface leads to two major drawbacks. First, because 

material flows to the periphery during large compression but the tangent displacement at 

the contact surface is specified as zero, there is an unrealistic shear band at the periphery 

( 0.6r R  in Fig. 1(a)) within one finite element layer, i.e., it is mesh-dependent. Second, 

a very large plastic strain appears at the conical surface (see surface AB in Fig. 1(d)), 

which is unrealistic because the pressure and shear friction stress are very low, especially 

in the neighborhood of the point B.  

 To resolve the problems mentioned above, a large-sliding contact model based on a 

combination of classical isotropic Coulomb friction and plastic friction is utilized within 

ABAQUS code20. Thus, in addition to physical nonlinearities due to plasticity and PTs, and 

geometric nonlinearities due to large strains and rotations, contact nonlinearities are included, 

making the problem very sophisticated. The results obtained in this paper are compared with 

those for a no-slipping model, and the effects of the coefficient of friction on PTs and plastic 

flow are elucidated. 
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FIG. 1. (a) Diamond anvil cell scheme, (b) a quarter of a sample in the initial undeformed 

state, (c) geometries of contact surface in the undeformed state, and (d) boundary 

conditions. 
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4.2 Problem formulation 

Geometry and boundary conditions. A large-sliding contact problem coupled with 

strain-induced PTs and plastic flow, in a sample of radius R  between two rigid diamond 

anvils under a rising axial compressive force P, is investigated in this paper by using the 

finite element software ABAQUS. A similar geometric model and the same physical 

equations for PTs as in Refs.15, 18 were utilized. Due to symmetries of geometry and 

load, a quarter of a sample is considered in the cylindrical coordinate system rz  (see the 

undeformed configuration in Fig. 1(b) and the deformed one in Fig. 1(d)). The boundary 

conditions for the DAC are shown in Fig. 1(d). The contact algorithm in ABAQUS 

requires the master surface of a contact interaction (herein referring to the surface of the 

diamond anvil) to be smooth and therefore a small fillet radius 0 0 2r H  is utilized to 

smooth the sharp corners of the diamond and the sample (See Fig. 1(c)).  

 

Material model. To obtain generic solutions, the simplest isotropic, perfectly plastic 

model for the sample found in Refs. 15, 18 is assumed. The applicability of the perfectly 

plastic and isotropic model with the yield strength independent of the deformation history 

for monotonous loading is justified in Ref. 21 for various classes of materials (rocks, 

metals, powders, etc.) starting with accumulated plastic strains q>0.6÷1. Compressive 

normal strains, stresses, and pressure will be considered positive. A complete system of 

equations for the coupled plastic flow and the strain-induced PT is enumerated below.  

The deformation rate d  is decomposed into elastic, plastic, and transformational parts: 

d ε I de t p


   .                                                                    (1) 
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Transformation volumetric strain: 

ctt   .                                                                  (2) 

Hooke's law for pressure p and deviatoric stress part devs T  of the true stress tensor T 

yields: 

                                          
0 ; 2e ep K Gdev s ε .                                                 (3) 

Von Mises yield condition for two-phase mixture: 

   
0.5

1 2

3
: 1

2
i y y yc c c   

 
     
 

s s .                                                 (4) 

Plastic flow rule in the elastic region: 

 cyi                           0p d .                             (5) 

in the plastic region: 

 cyi                    
p d s ;          λ ≥ 0 

 
.            (6) 

Equilibrium equation: 

0. T                                                               (7) 

Strain-controlled kinetics for plastic strain-induced PT10: 

     

  12

1

2

1

1

10
yy

rr

y

y

dd

cc

pHpcpHpc

k
dq

dc











  .                                            (8) 

Here elastic, transformational, and plastic components are distinguished by subscripts e, 

t, and p respectively; 
dd

h

d

d
pp

pp
p








  and 

rr

h

r

r
pp

pp
p








  are dimensionless characteristic 

pressures for direct and reverse PT; d

hp  and r

hp  are the pressures for direct and reverse 

PTs under hydrostatic loading, respectively; dp  is the minimum pressure below which 
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direct strain-induced PT to high pressure phase does not take place; rp is the maximum 

pressure above which reverse strain-induced PT to low pressure phase cannot occur;

 

q is 

the accumulated plastic strain defined from 
1/2(2 / 3 : )p pq  d d ; I is the second-rank unit 

tensor; e


 and s


 is the objective Jaumann time derivative of the elastic strain and 

deviatoric stress; 
0e  and t are the elastic and transformation volumetric strains for 

complete PT, respectively; H  is the Heaviside step function; G  and K  are the shear and 

bulk moduli, respectively; 
i


 
is the stress intensity or effective stress; λ is a parameter 

that is determined by iterative satisfaction of the yield condition; k is the kinetic 

parameter which scales the rate of PTs.  

Eq. (8) is derived in Ref. 10 as a coarse grained microscale model based on 

barrierless nucleation on defects (e.g., dislocation pile ups) generated during plastic flow. 

Since stress concentration near the tip of the defect sharply reduces away from the defect, 

the nucleus reaches thermodynamic equilibrium and does not grow further. That is why 

(and because of barrierless nucleation) time is not a parameter and accumulated plastic 

strain q is a time-like parameter. In a two-phase mixture plastic strain is localized in the 

phase with the smaller yield strength; this is the reason for appearance of the ratio of the 

yield strengths of phases in Eq. (8). 

Friction model. The standard Coulomb friction suggests that no relative motion on a 

contact surface occurs if the friction stress   is less than the critical friction stress 

crit n  , where n  is the normal to the contact surface stress,   is the coefficient of 

friction that can be defined as a function of the contact normal stress, n ; the slip rate cu ; 

the surface temperature and other field variables at the contact point. In this paper, the 
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simplest case  = constant is considered. While for elastic materials standard Coulomb 

friction is suitable, for elastoplastic materials the friction shear stress   cannot exceed the 

yield strength in shear 3y y   (von Mises yield condition (4) has been utilized). 

Thus, relative slip on a contact surface also occurs even though crit n  and the critical 

friction stress is redefined as min( , )crit n y   . During PTs, yield strength 
y  is not 

constant but depends on concentrations and yield strengths of phases. This is implied in 

Eq. (4) for the two-phase mixture   1 21y y yc c     , where 
1y  and 

2y  are the yield 

shear strength of the low- and high-pressure phases, respectively.  

In the classic version of the Coulomb friction there is no relative motion if friction stress 

crit  . However, during actual simulations, a jump between a slip and cohesion 

conditions may induce a serious convergence problem in ABAQUS, especially for the 

large-sliding contact problem. Consequently, to regularize the problem, the cohesion 

condition is replaced by an elastic reversible tangential small slip 
eu . Both elastic slip 

and elastic deformation are reversible during the loading and unloading process. While 

we use elastic slip as a mathematical regularization method, it can be physically 

interpreted as elastic deformation of a thin contact layer (asperities); then sliding 

corresponds to plastic flow in the contact layer or cutting asperities. For an accurate 

solution, the elastic slip should be constrained in the small range, for example, the 

specified maximum elastic relative slip critu  equals 0.5% of the average element length 

for fine-meshing models. 

One can relate the elastic slip to the frictional shear stress by the simplest linear 

relation
s ek u  , where sk  is the contact stiffness. We will define the contact stiffness 
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from the condition that sliding starts at the prescribed critical values critu . Then one has 

crit s critk u   and s crit critk u  ; consequently, sk  varies with the normal stress n  or the 

yield shear strength 
y . Thus, the following complete system of equations will be used. It 

is in some extent similar to that for elastoplasticity theory. 

Decomposition of total contact relative displacement into elastic and sliding parts: 

c e su u u  .      (9) 

Yield strength in shear: 

  1 2( ) 1y y yc c c     .    (10) 

Critical friction stress 

min( , ( ))crit n y c   .    (11) 

Rule for elastic contact displacement: 

  1 21 ( )

( )

e
y y n y

crit

e
n n y

crit

u
c c if c

u

u
if c

u

    

   


      



  



 (12) 

Sliding rule below critical friction stress: 

| | crit     →  0su  .    (13) 

Sliding rule at critical friction stress: 

  1 21 y y n y

n n y

c c if

if

    

   

        


 

 → ( ) ( )sSign u Sign   (14) 

In Eq. (14), the signs of su  and contact shear stress are the same, while the 

magnitude su is determined from the satisfaction of the sliding condition | | crit  . Note 

that the numerical algorithm includes a possibility of elastic contact unloading even if Eq. 
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(14) is satisfied at the beginning of the loading step. Thus, if signs of c e su u u   and   

are opposite for some incremental step, even though   1 21 y yc c         at the 

beginning of this increment step, the governing equations (12) and (13) rather than Eq. 

(14) should be used in this step.  

Numerical procedure. To consider the coupled mechanics and PT problem, the 

ABAQUS user subroutines20 USDFLD and HETVAL are implemented, in which 

transformation strain is modeled by the thermal strain and concentration c is treated as 

temperature. 

For a contact problem, once 
1 2y y  , the user subroutine FRIC in ABAQUS was 

implemented to define the critical friction stress. For constant shear yield 

strength  1 2y y  , one can also use standard procedure without subroutine FRIC, which 

was utilized to confirm the consistency of programming FRIC and standard procedure. 

In the dimensionless form, except for friction stresses   which are normalized by the 

yield strength in shear 
1y , all stress-related parameters (e.g., pressure p) are normalized 

by 
1y ; the dimensionless force F is the axial force P normalized by the product of 

1y  

and the undeformed contact area (which is equal to the area of the surface of revolution 

produced by complete revolution of the curve bac  in Fig. 1(b) about the z-axis). To 

compare to the case with cohesion, material parameters are chosen to be the same as in 

the Ref. 18: 6.75dp  , 6.375rp  , 11.25d

h
p  , 1.875r

h
p  , Young modulus 162.5E  , 

Poisson's ratio 0.3v  , and volumetric transformation strain for direct PT 0.1t   . 

Since d rp p  , strain-induced PTs are impossible in the pressure range r dp p p    (see 

Ref. 10). 
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4.3 Study of coupled plastic flow and phase transformations 

We will discuss strain-induced PTs at rising axial compressive force F for weaker, equal-

strength, and stronger high-pressure phases in the large-sliding contact model 

respectively. In this section friction coefficient 0.3   is assumed for all problems. 

Current results will be also compared with those for no-slipping models in Ref. 18, and 

effects of the friction coefficient on PTs and plastic flow will be discussed in the next 

section. 

Weaker high-pressure phase 

With the increase of an axial compressive force F, when the minimum pressure 

dp  for direct PTs is exceeded the high-pressure phase first appears and grows in the 

center of the sample  0r z   (see Fig. 2(a) and (b)). In Fig. 2(c) the high-pressure 

phase also nucleates at the center but then shifts towards the contact surface. Compared 

to the results of the case with cohesion in Ref. 18 there are three salient differences in our 

current results. First, the rate of PT with respect to change of load is higher. Without 

fixing displacements at the contact surface along the radial direction, there is a faster 

thickness reduction which causes a larger accumulation of plastic strain and increment of 

concentration of the high pressure phase. Second, the geometry of PT zones significantly 

differs from that in Ref. 18. For example, there is a high pressure phase at the center of 

the sample for k=5 and 10 and there is no PT at the center at the initial stages of loading 

for k=30, opposite to the results in Ref. 18. Third, localization of plastic strain and PT 

due to strain softening appears in a thin band for both cases. Without sliding18, material 

flow towards the periphery in the sample, on the other hand a lack of radial motion at the 

contact surface will create a shear band located near the contact surface. This leads to a 



www.manaraa.com

87 

 

 

very large plastic strain on the contact surface and the promotion of PT. In the current 

model with contact sliding, plastic strain near the contact surface as well as the 

concentration of high pressure phase are reduced. 

    

(a)     (b) 

                      

              (c)       

FIG. 2. Concentration of high pressure phase c  under compression for (a) k=5, (b) k=10, 

and (c) k=30; 
2 10.2y y  and 0.72r R   in Fig.1 (b). The dimensionless axial force F  

is (1) 4.0, (2) 4.2, (3) 4.4, (4) 4.5, (5) 4.66. 

 

 It is worth mentioning that PT from semiconducting Si I to weaker metallic Si II 

under compression in a DAC was observed experimentally13 in a thin contact layer only 

but not in the bulk. Our results in Fig. 2(a) and (b) slightly away from the center also 

demonstrate PT predominantly near the contact surface only. This coincidence also 

confirms that the possibility of strain-induced (rather than pressure- or stress-induced) PT 

under high pressure. Indeed, stress intensity is constant in the entire sample. Pressure 

varies slightly along the thickness, but PT occurs where plastic strain is concentrated. 
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Such a PT in a thin surface layer could be observed using Raman method, while X-ray 

diffraction patterns, which are averaged over the sample thickness, may not detect it. 

Distributions of accumulated plastic strain q , pressure p  and high-pressure phase 

concentration c  on a contact surface are shown in Fig. 3. Oscillations in pressure and 

plastic strain are observed, being caused by material instabilities due to softening during 

PTs. However, they are much less pronounced than in the case with cohesion in Ref. 18 

and oscillations in concentration are absent here completely. This is due to suppressed 

shear and the PT banding at the contact surface because of relative sliding of the material 

with respect to an anvil. Consistent to experimental results for ZnSe in Ref. 22, pressure 

for k=5 in Fig 3(a) first linearly increases from the periphery to the center followed by a 

drop, and then continues to increase until it reaches the center of a sample. One could 

note that pressure drops at one of the two-phase boundaries to the value which 

corresponds to the minimum pressure dp  for direct strain-induced PTs. This could be 

utilized for experimental evaluation for the value of dp . However, at two other phase 

boundaries pressure is above dp . It should be mentioned that for k=5, although pressure is 

larger than dp  in the region 0.12 0.32r R  , PTs do not occur because of very low 

plastic strain. In addition, when the tip of the PT band, clamped by stronger low-pressure 

phases, reaches the contact surface then strain localization will exist there and is shown 

on Fig. 3 (a). For k =30, pressure also linearly grows initially from the periphery to the 

center. For F=4.2, pressure curve has a plateau at the center with some oscillations in the 

range r dp p p   , which is caused by low friction stress in this region. With increasing 
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load, pressure and concentration c grow in the central region. Such a stress distribution 

was observed for PT in CuI in Ref. 5.  

 

(a)                               (b) 

FIG. 3. Distributions of accumulated plastic strain q , pressure p , and high-pressure 

phase concentration c  on the contact surface, for (a) k=5 and (b) k=30 and 
2 10.2y y  . 

The dimensionless axial force F  is (1) 4.2, (2) 4.5, (3) 4.66. 

 

 Due to symmetry about the z-axis friction shear stress   equals zero at the center. 

Due to compression, material flows from the center towards the periphery, and friction 

shear stress reaches its maximum value 1y  at the periphery. From Fig. 4, there is a large 

oscillation in friction shear stress, especially for k=5 where a softer high-pressure phase 

arrives at the contact surface and is clamped by a harder low-pressure phase. Drops in 

friction shear stresses were found in the two-phase region, which are caused by the 
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volume reduction during PTs. Under an increase in loading conditions, these drops move 

towards the periphery due to the propagation of the PTs to the periphery.  

It is necessary to mention that the rate of decreasing of pressure in Fig. 3 suddenly 

changes at 0 96r R . , which is caused by change of geometry from plane to curved 

surface (See Fig. 1(c)). The fast decrease of pressure in the region 1r R leads to 

1 yup  and further to a sudden drop of friction stress in Fig. 4. Due to changes of 

geometry at 0 96r R . , this induced features of pressure and friction stress is applicative 

for equal-strength and stronger high pressures, which will be shown in plots of pressure 

and friction stress in the following sections. 

Fig. 5 exhibits the dimensionless accumulated relative slipping displacement of 

the sample with respect to the diamond on the contact surface. Large sliding is mostly 

localized in the periphery 0.42r R  , where friction stress reached the yield strength 

(see Fig. 4 at F=4.0).  It is clear from Fig. 5(b) that during an increase in load F from 4.2 

to 4.66, there is no further slip in the region 0.42 0.52r R  , because friction stress 

reduces to a value lower than critical friction stress. However, there is still a slip in the 

region 0.4 0.5r R   for k=5 despite the small shear stress (see in Fig. 4(a)) because the 

weaker high pressure phase reaches the contact surface (see Fig. 3(a)) and therefore 

critical friction stress also becomes small.  
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(b) 

FIG. 4. Distribution of dimensionless friction shear stress   normalized by 
y  on the 

contact surface, for (a) k=5 and (b) k=30, and 
2 10.2y y  . The dimensionless axial 

force F  is (1) 4.0, (2) 4.2, (3) 4.4 (4) 4.66. 
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(b) 

FIG. 5.  Distribution of dimensionless accumulated relative slipping displacement 

02 /cd u H  on contact surface normalized by half of thickness of a sample, 0 2H , for 

(a) k=5 and (b) k=30, and 2 10.2y y  . The dimensionless axial force F  is (1) 4.2, (2) 

4.5, (3) 4.66. 
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(a)     (b) 

                         

(c) 

FIG. 6. Concentration of high-pressure phase c  under compression for (a) k=5, (b) k=10, 

and (c) k=30, and 
2 1y y  . The dimensionless axial force F  is (1) 4.0, (2) 4. 3, (3) 4.6, 

(4) 4.9, (5) 5.13 

 

Equal strength of phases 

In contrast to the case for weaker product phase  2 10.2y y  , the obvious localizations 

of strain and PTs disappear for an equal strength of phases  2 1y y   because of the 

absence of material softening during PTs. Fig. 6 shows that the thickness of a sample 

significantly decreases during rising axial force. There is a wider two-phase region 

compared to the weaker high-pressure phase, and with the growth of kinetic parameter k, 

the rate of PTs increases at the initial stages of compression. For a large force, the effect 

of k is less pronounced because the entire central part of the sample is completely 

transformed. Fig. 7 exhibits the distributions of pressure p and high-pressure phase 
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concentration c on the contact surface under rising axial force. When PT starts in the 

center of a sample, pressure in the central region is almost constant because of low 

friction. At the initial stage of compression, PT occurs in the center of the sample and 

leads to a reduction in volume which counteracts the increase of pressure due to rising 

loading. Therefore, pressure increases slowly in the central region. In particular, for 

F=4.3 in Fig. 7, pressure in the center slightly reduces with the growth of the kinetic 

parameter k, because  PT increases in the center with rising k. However, at the later stage 

of compression  PT almost completes in the center. There is no volumetric reduction due 

to  PT and pressure increases quickly during a rise in axial force F due to increased radial 

flow and shear frictional stresses (see Fig. 8). Small steps (plateaus) with almost constant 

pressure value were observed in experiments6-8, 22 for KCl and fullerene at the very 

heterogeneous pressure distribution. With the growth of the kinetic parameter k, these 

small pressure steps in the two-phase region gradually become obvious. They are located 

in the two-phase region and are clearly visible for k=30. With the rising axial force F and 

a continuous movement of the position of this “step” towards the periphery, the pressure 

value at the step almost does not change and is around the minimum pressure for direct 

PT dp  (Fig 7(c)). This result could be used for the evaluation of the value dp  in 

experiments. Since such steps are not evident for smaller values of k, one can conclude 

that k is at least greater than 10 for KCl and fullerene.  
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(c) 

FIG. 7. Distributions of dimensionless pressure p and high-pressure phase concentration 

c  on a contact surface, for (a) k=5, (b) k=10, and (c) k=30, and 2 1y y  . The 

dimensionless axial force F  is (1) 4.3, (2) 4.6, (3) 5.13.  
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(b) 

FIG. 8. Distribution of dimensionless friction shear stress   normalized by y  on contact 

surface, for (a) k=5 and (b) k=30, and 2 1y y  . The dimensionless axial force F  is (1) 

4.3, (2) 4.6, (3) 5.13. 

 

Fig. 8 shows the distribution of friction shear stresses at the contact surface. 

During compression material flows from the center to the periphery, and friction stress is 
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zero at the axis of symmetry and reaches its maximum value, equal to the yield strength 

in shear 
y , at the periphery. There is a drop in friction stresses located in the two-phase 

region where  PT occurs, which is related to the volume reduction during the PT and less 

intense radial flow. In particular,  PT at F=4.3 is much faster for k=30 than for k=5 (see 

Fig. 6). Therefore the drop in shear stress for k=30 is much larger and the value changes 

the sign in the PT region. Fig. 9 exhibits the dimensionless accumulated relative slipping 

displacement 02 /cd u H  on the contact surface normalized by half of the sample 

thickness, 0 2H . Slipping mostly occurs at the periphery 0.42r R   and with growth of 

radial coordinate r, the sliding displacement becomes larger. It should be mentioned that 

in the region 0.42 0.52r R   slipping distance does not change during rising axial 

force because friction stress   reduces and becomes smaller than critical friction stress 

crit  due to PTs (see in Fig. 8). Even though shear stress   attains the crit  in the region 

0.1 0.37r R   at F=5.13, slipping either does not occur for k= 5 or is very small for 

k=30 as there is no slipping on both the left and right sides of this region and the material 

becomes locked. In addition, slipping displacement d does not change obviously with the 

growth of k. This is because the PT does not essentially affect processes at the periphery 

and mostly occurs in the region where the sliding is locked. 
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(b) 

 

FIG. 9. Distribution of dimensionless accumulated relative slipping displacement 

02 /cd u H  on the contact surface, for (a) k=5 and (b) k=30, and 2 1y y  . The 

dimensionless axial force F  is (1) 4.3, (2) 4.6, (3) 5.13. 
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Stronger high-pressure phase 

For the case of 
2 15y y  , the evolution of pressure and concentration is qualitatively 

similar to those for which 
2 1y y  . Fig. 10 shows that with the growth of the kinetic 

parameter k the rate of the PT increases. Comparing Figs. 2, 6, and 10, one can see that 

with the growth of the yield strength the width of the two-phase region increases and the 

rate of PT reduces under the same loading. This occurs because the appearance of a 

material with higher strength leads to a reduction of plastic strains and slower 

transformation kinetics.  

     

(a)     (b) 

                                             

(c) 

FIG. 10. Concentration of high-pressure phase c  under compression for (a) k=5, (b) 

k=10, and (c) k=30, and 2 15y y  . The dimensionless axial force F  is (1) 4.0, (2) 4.4, 

(3) 4.8, (4) 5.2, (5) 5.7. 
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(b) 

FIG. 11. Distributions of dimensionless pressure p and high-pressure phase 

concentration c  on contact surface, for (a) k=5 and (b) k=30, and 2 15y y  . The 

dimensionless axial force F  is (1) 4.8, (2) 5.2, (3) 5.7. 
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(b) 

FIG. 12. Distribution of dimensionless friction shear stress   normalized by 
y  on 

contact surface, for (a) k=5 and (b) k=30, and 2 15y y  . The dimensionless axial force 

F  is (1) 4.8, (2) 5.2, (3) 5.7. 
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(b) 

FIG. 13. Distribution of dimensionless accumulated relative slipping displacement 

02 /cd u H on contact surface for (a) k=5 and (b) k=30, and 2 15y y  . The 

dimensionless axial force F  is (1) 4.8, (2) 5.2, (3) 5.7.
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Fig. 11 shows distributions of the concentration of high-pressure phase and 

pressure at the contact surface under rising axial loading. In comparison with the results 

for a no-slipping model in Ref. 18, the concentration of the high-pressure phase is larger 

in the current slipping model for all values of k for the same applied force. There are 

several reasons for such an acceleration. First, radial material plastic flows in a sample 

become faster due to permissible sliding at the contact surface, which accelerates the 

strain-induced PT. Second, the pressure distribution here is significantly higher at the 

center (where PT occurs) and a little bit lower at the periphery than in Ref. 18, which also 

promotes PT. The reason of the increased pressure in the central region is in the increased 

shear friction stress. A simplified equilibrium equation 
2 c

zrdp

dr h


  is applicable here (see 

Refs.10, 15), in which radial shear stress  c

zr
 on contact surface is equal to friction 

stress  at 0 96r R . . The rate of increase in friction stress with increasing force (see 

Fig. 12) in the region 0.35r   is much faster here than that in Ref. 18, because the 

material’s radial flow is less restricted. In addition, a faster increase in high-pressure 

phase concentration leads to a higher shear strength and stress, and a higher pressure, i.e., 

there is a positive feedback. Note that the friction shear stress at the periphery attains the 

shear strength of the low-pressure phase. The obvious growth of pressure in the central 

region leads to a slight decrease of pressure in the periphery to keep the same axial force. 

Surprisingly, steps in the pressure distribution in the two-phase region are less 

pronounced here than in Ref. 18, and there are no pressure drops here. Friction stress 

drops for k=30 in the two-phase region due to volume reduction during PT. For the 

lowest force friction stress and consequently the velocity of the relative sliding change 
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sign, i.e., there is material flow to the center, as in some experiments. However, flow to 

the center is less pronounced than that for the cohesive boundary conditions.  

Fig. 13 exhibits distribution of the dimensionless slipping displacement d on the 

contact surface which is very similar to that for 
2 1y y  . With the growth of slipping 

displacement, d mostly occurs in the periphery and it does not change significantly with 

the growth of k which is similar to the case for 
2 1y y  . There are two reasons for this 

sliding-locked region: (a) reduction of volume due to PT which affects the shear stress 

(similar to the case 
2 1y y  ), and (b) an increase in strength during PT and further 

increases in the critical friction stress crit . 

 

4.4 Effects of friction coefficient on plastic flow and phase transformations 

In this section slipping and no-slipping models will be further compared for 

2 1y y   and the effect of friction coefficient on PTs and plastic flow will be examined. 

Fig. 14 shows the evolution of high-pressure phase concentration for models with 

slipping (coefficient of friction 0  , 0.1 and 0.5) and without slipping. Combining Fig. 

14 and Fig. 6(c) for 0.3  , one can see that for the same applied force the PT progress 

reduces, and the width of the two-phase region increases with the increase in friction 

coefficient from 0.1 to 0.5. We should mention that the common magnitudes of the 

friction coefficient  0.1, 0.3, and 0.5   were mostly considered. For a very small 

friction coefficient, e.g., 0.01  , or even without friction ( 0  ), PT does not start 

down to quite small sample thicknesses, at which pressure attains the minimum pressure 

for direct PT dp  (please check this sentence, we could find in Fig.18 that increase F, and 
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maximum pressure reduces due to increases of contact surface area). For example, for 

0  and the axial force F=4.0 in Fig. 14 (d) the thickness decreases to about 1/3 of its 

original size, yet maximum pressure is around 5 which is less than dp =6.75 (See Fig. 

18). 

 

   

(a)            (b) 

                            

                                          (c) 

FIG. 14. Distribution of high-pressure phase concentration c , for k  30, 

2 1y y  , coefficient of friction (a) 0.1, (b) 0.5 and (d)  0, and (c) no 

slipping model. The dimensionless axial force F  is (1) 4.0, (2) 4.3, (3) 4.6, (4) 

4.9, (5) 5.13 
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(a)                                       (b) 

    

FIG. 15. Distribution of accumulated plastic strain q, for k  30, 
2 1y y  , 

coefficient of friction (a) 0.1, (b) 0.5 and (d)  0, and (c) no slipping 

model. The dimensionless axial force F  is (1) 4.0, (2) 4.3, (3) 4.6, (4) 4.9, (5) 

5.13. 
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(a)      (b) 

     

(c)      (d) 

FIG. 16. Distribution of pressure, for k  30, 
2 1y y  , coefficient of friction 

(a) 0.1, (b) 0.5 and (d)  0, and (c) no slipping model. The dimensionless axial 

force F  is (1) 4.0, (2) 4.3, (3) 4.6, (4) 4.9, (5) 5.13. Pressure range r dp p p  
 
in 

which strain-induced PTs are impossible is shown in magenta. 

 

Fig. 15 exhibits the evolution of accumulated plastic strain q with rising 

dimensionless axial force F for cases with the contact sliding (with  0, 0.1 and 0.5) 

and cohesion. With the reduction of friction coefficient   from 0.1 to 0.5, the plastic 

strain in PT zones increases which is one of the reasons of promotion of strain-induced 
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PTs in Fig. 13. Another reason for higher concentration of a high pressure phase is 

related to the increase of pressure in the PT zone for a smaller friction coefficient, which 

is shown in Fig. 16. This happens due to a faster flow of material from the center to the 

periphery which leads to a larger shear stress. For  0, although plastic strian is much 

larger than other cases in Fig. 15 due to fast reduction of sample, it doesn’t intensify PT 

knetics because pressure is more uniform in sample and lower than  minimum pressure 

for direction PTs 
dp  (See Fig. 16).  

The obvious drawback for the cohesion model in Fig. 15(c) is related to the 

formation of a shear band on the contact surface (for 0.6r  , including inclined surface) 

within a single finite element, i.e., its thickness is mesh-dependent. When sliding is 

included localization of plastic strain at the contact surface is less pronounced and is 

mesh-independent. This is due to a smoother decrease of plastic strain from the contact 

surface to the symmetry plane (see Fig. 15(a)) in contrast to a sudden drop between the 

first two layers of elements near the contact surface in the adhesion model. In addition, 

because of relatively low pressure at the inclined surface AB in Fig. 1(d), cohesion and 

corresponding strain localization are unrealistic. When sliding is allowed, this drawback 

is eliminated. 

 

The force-sample thickness plots are presented in Fig. 17 for different contact 

conditions. The reduction in friction coefficient   intensifies the material radial flow 

and promotes a reduction in the sample thickness. This leads to an increase in 

accumulated plastic strain and acceleration in transformation kinetics. Fig. 18 shows the 

maximum pressure max
p  in the sample versus sample thickness 0h H and applied force 
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F. Throughout this paper (except for 0  ), all comparisons have been made while 

using the same force because it is what is prescribed in experiments. However, thickness 

of the sample under the load is also of practical importance because it determines the 

total volume or mass of the high pressure phase. This may be important if such a process 

is utilized for production of a high pressure phase or for a very high pressure when the 

quality of the X-ray patterns is limited by the sample thickness. Plots of max
p  versus F 

for 0   in Fig. 18(b) shows that when F>3.9, with increase of applied load F, 

maximum pressure max
p surprisingly reduces, which is caused by increase of contact 

surface due to fast reduction of thickness (See Fig. 17). Therefore, only increase of load 

F may not produce the pressure larger than dp . Results for max
p  versus F for 0   are 

not surprising and have already been discussed in the paper. At the same time, results for 

max
p versus 0h H  with 0.1   offer new perspective. The main point of interest is that 

for 0 0.72h H   the relation between max
p  and thickness is practically independent of 

contact conditions. At an initial loading process 
max

dp p ,  max
p  increases linearly and 

fast with the reduction of thickness with the same slope for all of four cases. When max
p  

just exceeds the minimum pressure for direct PT dp
, max

p  is almost constant in some 

range of thickness reduction, because volume reduces during PT. Then max
p  increases 

again due to rising axial force. For 00.65 0.72h H  , maximum pressure is 

independent of thickness for 0.3   but reduces for smaller  .  

Fig. 19 exhibits the concentration at the typical sample point  0 3 0. ,r R z   

versus thickness of the sample and the applied force for various friction conditions. 
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Again, dependence on friction conditions for the same applied force is the same as was 

discussed above: in general, reduction in friction promotes PT. Comparison for the same 

thickness is less trivial. At the initial stage of loading the thickness reduces but PT does 

not occur due to low pressure; after pressure exceeds  dp
, concentration increases very 

fast with reduction of thickness. During an increase of concentration from 0 to 1, there 

are two plateaus where thickness reduces without (or with small) changes in 

concentration. This happens because at this local point plastic strain does not change. 

While for 0.1   concentration is the lowest for the same thickness, for larger friction 

coefficients the dependence of concentration on friction is non-monotonous. Note that 

Fig. 19 determines concentration in the spatial rather than in material point and that the 

effect of convection increases with reduction of friction. Heterogeneity in pressure and 

plastic strains and convection explain crossing of some curves in Fig. 19 for different 

friction conditions. Obtained results allow one to control strain-induced PTs by changing 

friction condition for the chosen goal. 
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FIG. 17. The normalized axial force F versus the dimensionless current thickness 

of sample 0h H in deformed state for k  30, 2 1y y  ,  0, 0.1, 0.3 and 0.5, 

and cohesion condition. 
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(b) 

FIG. 18. The normalized maximum pressure max
p  in the sample versus the 

dimensionless  thickness of sample 0h H (a) and force F (b), for k  30, 

2 1y y  ,  0, 0.1, 0.3 and 0.5, and cohesion condition. At the left end of plots 

in (a), the axial force in this point is F=5.13 for all of cases. 
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(b) 

FIG. 19. The concentration at the point  0 3 0. ,r z   versus the dimensionless 

thickness of sample 0h H (a) and force F (b), for k  30, 
2 1y y  ,  0.1, 0.3 

and 0.5, and no slipping condition. At the left end of plots in (a), the axial force in 

this point is F=5.13 for all of cases. 
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4.5 Concluding remarks 

In this paper, the effect of contact sliding and the friction coefficient at the anvil-

sample contact surface on the pressure generation, plastic flow and strain-induced PT 

during compression in a DAC is studied using FEM and the software ABAQUS. Results 

are obtained for weaker, equal-strength, and stronger high pressure phases and for three 

values of the kinetic coefficient k. For all cases the general trends are as follows. 

Allowing for sliding and a reduction in the friction coefficient intensify radial plastic 

flow in the entire sample (excluding the narrow region near the contact surface) and a 

reduction in thickness for the same applied force. Sliding eliminates mesh-dependence of 

the localized shear band near the contact surface and eliminates the shear band near the 

inclined surface of the anvil. For the initial geometry of a sample considered here, a 

reduction in the friction coefficient down to 0.1 intensifies sliding and pressure increases 

in the central region for the same axial force. Both increases in plastic strain and pressure 

lead to a promotion of strain-induced PT. However, for much smaller friction coefficients 

(e.g.,   ≤0.01), pressure reaches the critical value required for PT at very large 

compression only.(same problem with Page 32) The interesting effect of self-locking of 

sliding is revealed for the equal strength and stronger high pressure phases. In this case, 

the sliding condition is met in a region yet sliding will not occur because this region is 

surrounded from both sides by regions where the sliding condition is not fulfilled. There 

are two reasons for this sliding-locked region: (a) a reduction of volume due to PT which 

reduces the shear stress in surrounding regions, and (b) an increase in strength during PT 

and further increase in the critical friction stress crit  for the case with 2 15y y  . The 

results obtained in this paper reproduce and interpret a number of experimental 
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phenomena. Two main practical conclusions follow from our results. (a) Since the 

friction coefficient is unknown, it increases the complexity of the determination of 

material parameters in kinetic Eq.(8) from the experiment. (b) One can control plastic 

flow and PT by controlling friction, especially at the center of a sample and on the 

conical surface. The effect of friction is expected to be more pronounced for strain-

induced PTs under compression and shear in rotational DACs5-8, 10-12, 22.  
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CHAPTER 5. COUPLED PHASE TRANSFORMATIONS AND PLASTIC 

FLOWS UNDER TORSION AT HIGH PRESSURE IN ROTATIONAL 

DIAMOND ANVIL CELL: EFFECT OF CONTACT SLIDING  

Modified by a paper published in Journal of Applied Physics 

Biao Feng1                  Valery I. Levitas2, 

1) Department of Aerospace Engineering, Iowa State University, Ames, Iowa 50011, USA 

2) Departments of Aerospace Engineering, Mechanical Engineering, and Material 

Science and Engineering, Iowa State University, Ames, Iowa 50011, USA 

Abstract 

A three-dimensional large-sliding contact model coupled with strain-induced 

phase transformations (PTs) and plastic flow in a disk-like sample under torsion at high 

pressure in rotational diamond anvil cell (RDAC) is formulated and studied. Coulomb 

and plastic friction are combined and take into account variable parameters due to PT. 

Results are obtained for weaker, equal-strength, and stronger high pressure phases, and 

for three values of the kinetic coefficient in a strain-controlled kinetic equation and 

friction coefficient. All drawbacks typical of problem with cohesion are overcome, 

including eliminating mesh-dependent shear band and artificial plastic zones. Contact 

sliding intensifies radial plastic flow, which leads to larger reduction in sample thickness. 

Larger plastic strain and increased pressure in the central region lead to intensification of 

PT. However, the effect of the reduction in the friction coefficient on PT kinetics is 

nonmonotonous. Sliding increases away from the center and with growing rotation, and is 

weakly dependent on the kinetic coefficient. Also, cyclic back and forth torsion is studied 
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and compared to unidirectional torsion. Multiple experimental phenomena, e.g., pressure 

self-multiplication effect, steps (plateaus) at pressure distribution, flow to the center of a 

sample, and oscillatory pressure distribution for weaker high-pressure phase, are 

reproduced and interpreted. Reverse PT in high pressure phase that flowed to the low 

pressure region is revealed. Possible misinterpretation of experimental PT pressure is 

found. Obtained results represent essential progress toward understanding of strain-

induced PTs under compression and shear in RDAC and may be used for designing 

experiments for synthesis of new high pressure phases and reduction in PT pressure for 

known phases, as well as for determination of PT kinetics from experiments. 

5.1     Introduction  

Diamond anvil cells are routinely utilized for research on material behavior and PTs 

under high hydrostatic or quasi-hydrostatic pressure. Recently, experiments in RDAC 

under high pressure and large plastic shear attracted researchers’ interests due to a 

number of exciting phenomena: (a) a significant reduction in PT pressure in comparison 

with hydrostatic conditions, by a factor of 2-51-5 and even almost 10 in Ref. 6; (b) an 

appearance of new phases, which would not be obtained without shear straining4, 7-9; (c) 

fast strain-controlled kinetics in which strain instead of time plays a role of a time-like 

parameter3, 10; (d) the substitution of a reversible PT9, 11 for an irreversible one, and (e) a 

reduction (up to zero) in pressure hysteresis2. Study on PTs under high pressure and large 

shear is of fundamental and applied significance in multiple problems, for example, 1) 

search for new high-pressure phases, in particular, for those that could be retained at 

ambient pressure and be utilized in engineering applications; 2) finding ways to reduce 

the PT pressure to level that makes the technology economically reasonable; 3) 

understanding processes in shear bands in geophysics (especially, during initiation of 
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earthquakes), penetration of projectiles in materials, and shear ignition of energetic 

materials; and 4) technological applications (cutting and polishing of Ge, Si, silicon and 

boron carbides, PTs during ball milling and high pressure torsion), see in Ref. 3 and 

references herein.  

When hydrostatic media is used, PT is classified as pressure-induced one which 

starts by nucleation at preexisting defects, which produce pressure/stress concentration. 

Without hydrostatic media and with or without rotation of an anvil, PTs are considered as 

strain-induced under high pressure. They occur by nucleation at new defects (e.g., 

dislocation pile ups and tilt boundaries) which are continuously generated during plastic 

deformation3. Since strain-induced defects produce much larger stress concentration than 

the pre-existing ones, external pressure can be significantly reduced. Strain-induced PTs 

in RDAC are described by three-scale theory (at the nano-, micro, and macroscales)3, its 

further developments at the micro10 and macroscales12, 13, and within numerical 

simulations at the macroscale12, 13. While there are some analytical and numerical 

solutions for interaction of PTs and plasticity at the nanoscale3, 14, they cannot be directly 

utilized in the current study on PTs in RDAC, due to the size of the sample of the order of 

magnitude of 1 millimeter. At the microscale3, 10, the strain-induced PTs can be 

characterized in terms of a pressure-dependent, strain-controlled kinetic Eq. (8), which 

includes four main parameters: a) the ratio of yield strengths of high ( 2y ) and low ( 1y ) 

pressure phases; b) the minimum pressure 
dp  below which direct strain-induced PT does 

not take place; c) the maximum pressure 
rp  above which reverse strain-induced PT 

cannot occur, and d) a kinetic parameter k which scales the PT rate. Due to highly 

heterogeneous distributions of stresses, strains, and concentration of phases, these 
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parameters have not been experimentally determined yet, and pressure distribution on the 

contact surface of sample and concentration of high-pressure phase distribution averaged 

over the sample thickness are experimentally available only9. That is why finite-element 

method (FEM) simulations have been developed to study the evolution of all fields, 

including concentration of high pressure phases, and effects of material parameters on 

them, as well as to interpret experimental phenomena12, 13, 15, 16. It is a nonlinear problem 

of coupled PTs and mechanics with large plastic deformations and displacements, which 

leads to nontrivial simulation challenges using FEM, including convergence.  

First, we would like to stress importance of friction between anvil and sample for 

high pressure physics. For radial plastic flow of a sample of the current thickness h in 

traditional diamond anvil cell, pressure p gradient along the radius r is described by a 

simplified equilibrium equation 
2


c

zrdp

dr h
(see in Ref. 3), where c

zr  is the radial 

frictional shear stress at the contact surface between sample and anvil. Without friction 

( c

zr =0), pressure does not vary along the radius; it is impossible to increase it to high 

value; and it cannot exceed the yield strength for a cylindrical sample or material 

hardness for indentation. However, friction usually reaches the maximum possible shear 

stress equal to the yield strength in shear 
y  at the major part of the sample surface. Then, 

for large ratio R h , where R is the sample radius, the pressure increases linearly from the 

periphery toward the center and can reach hundreds of GPa. Thus, the ability to create 

frictional resistance to the radial plastic flow in the thin sample during its compression is 

the main principle for producing high pressure and its application to physics, material 

science, and chemistry.  
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The main effect of rotation of an anvil in RDAC was also first explained in terms 

of friction stresses3, 17, 18. The magnitude of the friction stress vector τ, τ=|τ| is equal to the 

yield strength in shear y  (like in traditional DAC) but direction of τ is opposite to the 

velocity of relative sliding of a sample material with respect to anvil, i.e., it is inclined to 

the radial direction. That means that the radial component 
c

zr  of the friction stress vector 

τ is getting smaller during rotation of an anvil, reducing resistance to the radial plastic 

flow. It follows from the equilibrium equation that rotation of an anvil under constant 

axial force decreases sample thickness, producing additional plastic flow and 

compensating volume decrease due to PT. Thus, friction is one of the main players in the 

effect of plastic shear on PTs.  

While first numerical results for modeling strain induced PTs in DAC12, 16, 19 and 

in RDAC13 have been very successful in interpreting multiple experimental phenomena, 

they involve a strong assumption: there is full cohesion on the contact surface between 

sample and diamond anvils. In this case, radial displacements at the contact surface are 

zero and circumferential displacements of material are equal to circumferential 

displacements of an anvil. Such a model possesses three main drawbacks: (a) there is an 

unrealistic shear band near the contact surface which substitutes contact sliding; it leads 

to overestimated plastic strain, which artificially promotes strain-induced PT, and 

thickness of the shear band is mesh-dependent; (b) artificial large plastic deformation 

occurs in some region at the periphery where pressure is small and large sliding is 

expected, and (c) artificially increased resistance to the radial plastic flow suppresses it as 

well as reduction in thickness leading to redistribution of plastic deformation and 

concentration of high pressure phase. 
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In the current paper, a large-slip contact model coupled with large plastic flow 

and strain-induced PTs is developed and studied using FEM approach and code 

ABAQUS. This work can be considered as generalization of the previous works13 for 

simulation of the processes in RDAC when contact sliding is taken into account or 

generalization of the previous work 15 on modeling of the processes in DAC with contact 

sliding and friction, for much more complex three dimensional (3D) case of compression 

and shear in RDAC. Combination of classical isotropic Coulomb friction model with 

plastic friction model is extended to consider phase concentration-dependent friction 

stress and to include small elastic slipping. Significant effects of the contact sliding on 

the kinetics of plastic flow and strain-induced PT are revealed and quantified. 

5.2 Problem formulation  

Geometry and boundary conditions 

A RDAC is considered to have axisymmetric geometry but subjected to 3D 

compression and torsion loading, which differs from standard axisymmetric models in a 

DAC in Refs, 12, 15, 16 and should be classified as the generalized axisymmetric one. 

Geometry of RDAC and disc-like sample, loading and boundary conditions are shown in 

Fig. 1 along with a cylindrical coordinate system rz . First, an axial compressive force P 

is applied on the two diamond anvils to produce high pressure, and then one of diamond 

is gradually twisted at a fixed compressive force P. If relative rotation angle between two 

anvils is  , the half of the rotation angle 2  is applied on one anvil with respect to the 

symmetry plane ( 0z  ). Due to symmetry, a quarter of sample is considered with the 

following boundary conditions:  
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(a) 

 
(b) 

 
(c) 

 
(d) 

FIG. 1. (a) RDAC geometry and loading; (b) a quarter of sample in initial undeformed 

state; (c) geometry of a contact surface in the undeformed state, and (d) boundary 

conditions in the deformed state. 

(1) At the axis 0r  , radial displacement ru  and shear stress rz  are zero.  

(2) At the contact surface A B C    between rigid diamond and deformed material, 

the contact sliding conditions are applied, which will be described in Sec. II. C.   

(3) At the symmetry plane 0z  , the radial shear stress 0rz  , circumferential 

displacement 0u  , and the axial displacement 0zu  . 
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(4) Surfaces which are not in contact with diamond are stress-free. 

A large slip and plastic deformation problems coupled with strain-induced PTs in 

a sample between two rigid diamond anvils under high pressure and large shear is 

investigated using FEM software ABAQUS. The contact algorithm in ABAQUS requires 

the master surface in a contact interaction (herein referring to the surface of diamond 

anvil) to be smooth, and thus a small fillet radius 
0 2cr H  is utilized to substitute the 

sharp corners of contact surface (Fig. 1(c)), where 
0H  is the initial thickness of the 

sample. While our treatment is size-independent, typical radius R of an anvil is 100-250 

microns. 

Material model 

To obtain generic results, plasticity of a sample material is described by the simplest 

isotropic perfectly plastic model and diamond anvils are rigid, which was utilized in our 

previous studies12, 13, 15, 16, 19. The applicability of the perfectly plastic and isotropic model 

with the yield strength independent of the deformation history is justified in Ref. 20 

under monotonous loading for various classes of materials (metals, rocks, powders, etc.) 

starting with accumulated plastic strains 0.6 1q   . The deformation of a sample is 

described by function 0( , )tr r r , where 0r  and r  are position vectors of the particle in 

the undeformed and deformed states, respectively, and t is time. The deformation 

gradient, 0 e t p     F r r V F F  is multiplicatively decomposed into symmetric elastic 

stretch tensor eV  , transformational tF , and plastic pF  parts 21. Under the assumptions of 

small elastic and transformational strains but large plastic strains and material rotations, 

the following total system of equations is utilized in simulation: 
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Decomposition of the deformation rate  1

s
d F F

   into elastic, 

transformational, and plastic parts: 

e t p


  d ε I d .                                                      (1) 

Transformation volumetric strain: 

ctt   .                                                                  (2) 

Hooke's law for volumetric and deviatoric parts  

           
0 ; 2

3

rr zz

e ep K Gdev
  


 

    s ε .                            (3) 

Von Mises yield condition for two-phase mixture: 

   
0.5

1 2

3
: 1

2
i y y yc c c   

 
     
 

s s .                             (4) 

Plastic flow rule in the elastic region: 

 cyi    or   cyi                          0
p
d .                                     (5) 

in the plastic region: 

 cyi                   
p

d s ;    λ ≥ 0 .   (6) 

Momentum balance equation: 

0 T .                                                              (7) 

Our micro-scale theories3,10 suggest that strain-induced PTs can be characterized 

in terms of pressure-dependent, strain-controlled kinetic equation: 

     

  12

1

2

1

1

10
yy

rr

y

y

dd

cc

pHpcpHpc

k
dq

dc











 .    (8) 
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where p is the pressure, 
dd

h

d

d
pp

pp
p








  and 

rr

h

r

r
pp

pp
p








 ; 

d

hp  and 
r

hp  are the pressures 

for direct and reverse PTs under hydrostatic condition, respectively; s is the deviator of 

the true stress tensor T , devs T ; 
i

  is the stress intensity; c is the concentration of the 

high pressure phase; eε


 and s


 is the Jaumann objective time derivative of the elastic 

strain and deviatoric stress; subscript s means symmetrization of a tensor; I is the unit 

tensor; 
0e  is elastic volumetric strain; H  is the Heaviside step function; and K and G 

are the bulk and shear moduli. 

Friction model 

The traditional Coulomb friction assumes that the relative slip on a contact 

surface starts when magnitude of the friction stress vector τ , | |τ  , reaches the 

critical friction stress crit n  , where n  is the normal contact stress and   is the 

sliding friction coefficient. For elastoplastic materials, however, the magnitude of the 

friction stress cannot (could not) be larger than the yield strength in shear 3y y  , 

where  the yield condition (4) has been utilized. Consequently, it is reasonable to redefine 

critical friction stress min( , )crit n y    and relative slip on a contact surface occurs 

when the magnitude of the friction stress   reaches this critical value. During PTs, yield 

strength in shear y  varies based on the variation of concentrations and yield strengths of 

phases. For the case of two-phases mixture, Eq. (4) implies   1 21y y yc c     , with 1y  

and 2y  for the yield strength in shear of the low- and high-pressure phases, respectively. 

Three dimensional friction stress τ along the contact surface in the generalized 
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axisymmetric model can be decomposed into two orthogonal components 
c

r  and 
c

  

along the contact surface: 
c

  is along the circumferential twist direction and 
c

r  is along 

the radial direction. Further, 
c

r rz   and 
c

z    for the horizontal contact region 

 0 96r R .  in the Fig. 1.  

Note that in FEM simulations a sharp change between slip and cohesion 

conditions may cause convergence problem, especially for the large sliding. To improve 

the efficiency of numerical procedure, penalty method is utilized, in which the complete 

cohesion condition is replaced by a small elastic (reversible) slip vector 
e

u , similar to the 

elastic strain for elastoplastic material. Elastic slip can be visualized as elastic 

deformation of a thin contact layer (asperities), while sliding corresponds to plastic flow 

in the contact layer or cutting asperities. For robustness and accuracy of the penalty 

method, the magnitude of the elastic slip should be small, e.g., smaller than 0.5% of 

average element length for fine-mesh discretization (which in our case is the same for 

every contact element). 

It is assumed that the elastic slip vector is related to the friction stress vector by 

e

skτ u , where sk  is the (current) contact stiffness. Then we have for magnitudes 

e

sk u  . The contact stiffness is defined by the condition that sliding starts at the given 

critical elastic slip magnitude critu , i.e., s crit critk u . Due to crit , ks linearly varies with 

the normal stress n  or yield strength in shear y . The complete system of equations for 

contact friction is presented below. 

Decomposition of total contact displacement into elastic and irreversible sliding parts: 
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c e s u u u .      (9) 

Critical shear stress 

min( , ( ))crit n y c   .    (10) 

Yield strength in shear: 

  1 2( ) 1y y yc c c     .    (11) 

Equations for the vector of the elastic slip displacement:  

  1 2

.

.
1

e crit
n y

n

e crit
n y

y y

u
if

u
if

c c

 


 
 


 



  
    

u τ

u τ

  (12) 

Sliding rule below critical shear stress: 

   
2 2

| | c c

r crit      τ       0s u .    (13) 

Sliding rule at critical shear stress ( crit  ): 

  1 2

.

.
1

s

s n y

n

s

s n y

y y

if

if
c c

 


 
 


 



  
    

u
u τ

u
u τ

   (14) 

The main difference between current formulation and formulation in Ref. 15 for 

compression in traditional diamond anvils is that contact shear stresses and 

displacements are two dimensional vectors rather than scalars. 

Numerical procedure 

To treat this coupled PT and intense plastic flow problem, ABAQUS user 

subroutines22 USDFLD and HETVAL have been implemented, in which transformation 
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strain is treated as the thermal strain, and concentration c as temperature. For 1 2y y  , 

user subroutine FRIC in ABAQUS should be implemented to define contact behavior. 

For 1 2y y  , one can also use standard procedure without subroutine FRIC, which could 

be utilized to confirm the consistency of standard procedure and programming in FRIC. 

In the dimensionless form, shear stresses are normalized by the yield shear 

strength 1 1 3y y  ; all other stress-related parameters (e.g., pressure p and  minimum 

pressure for direct PT 
dp ) are normalized by 1y ; the dimensionless force F is the axial 

force P normalized by 
1y and the initial contact area, which is equal to the area produced 

by complete revolution of the curve ABC in Fig. 1(b) about the z-axis. The following 

material parameters have been used: 1.875r

h
p  , 11.25d

h
p  6.75dp  , 6.375rp  ; 

Poison's ratio 0.3v  ; Young modulus 162.5E  ; and volumetric transformation strain 

for direct PT 0.1t   . They are the same as for the problem with cohesion13, in order to 

facilitate the study of the effect of sliding. Friction coefficient   is the same for both 

phases. Due to
d rp p  , strain-induced PT could not take place in the pressure 

range
r dp p p   ; PT to the high pressure phase occurs for 

dp p  and PT to the low 

pressure phase takes place for 
rp p
. 

5.3 Coupled plastic flow and phase transformations under high pressure and 

large shear loading  

Strain-induced PTs and plastic flow under high pressure and large shear with a 

large-slip contact model are investigated in detail, for weaker, equal, and stronger high-
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(a)        (b) 

   
(c)        (d) 

FIG. 2. Distribution of concentration c  of a weaker  2 10.2y y   high-pressure phase 

with rising rotation angle   under a constant compressive axial force F=3.75, for 

0.72r R   in Fig.1 (b). (a) k=1, (b) k=5, and (c) k=10 , all for the contact models 

with sliding and friction coefficient 0.3  ; (d) k=10 cohesion model. Rotation 

angle is (1) 0, (2) 0.1, (3) 0.2, (4) 0.4, (5) 0.6, and (6) 0.9. 

pressure phases, respectively. In this section, the primary goals are as follows: first, 

effects of some parameters in Eq. (8) on PTs and plastic flow will be studied. 

Specifically, by prescribing k= 1, 5, and 10, the effects of kinetic parameter k will be 

considered, and by prescribing 2 1y y  =0.2, 1, and 5, the weaker, equal-strength, and 

stronger high-pressure phases will be studied. Second, multiple experimental phenomena 

will be reproduced, which include oscillatory pressure distribution for weaker high-

pressure phase, pressure self-multiplication effect, flow to the center of a sample, and 

small ‘steps’ on pressure distribution. Third, the main differences between current contact 
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model with slip and the previous model with cohesion will be found. Friction coefficient 

0.3   is accepted through this section; effect of variation of the friction coefficient on 

PT and plastic flow will be discussed in the Sec. IV.  

Weaker high-pressure phase 

We will discuss PTs and plastic flow in the sample for weaker high-pressure phase 

 2 10.2y y   under the rising rotation angle at fixed compressive force F=3.75. During 

PT, the strength reduces which causes material instability and localization of strains and 

high-pressure phase distributions. Because of material instability, this case is qualitatively 

different from other two cases with equal and stronger high-pressure phases. 

Fig. 2 exhibits the evolution of a weaker high-pressure phase concentration with 

growing rotation angle   at fixed axial force for contact model for k=1, 5, and 10, and 

cohesion model. With the growth of the kinetic parameter k, the geometry of PT zone and 

rate of PT are quite different. For k=1, the rate of PT is much slower than the cases with 

k=5 and 10, and fully transformed (red) zone in Fig. 2(a) barely propagates towards 

contact surface in the center of a sample and slowly propagates towards periphery. 

Starting with 0.1  in Fig. 2(a), there is thin PT band which connects the center of 

sample (r= z=0) and contact surface, where plastic strain and PT are localized and 

strength in this region is lower than in the low pressure phase outside the band. With the 

growth of rotation angle, the torsion almost completely localizes inside this thin band and 

plastic strain almost does not spread outside of it (see Fig. 3(a)). Therefore, the region 

above this band twists almost like a rigid body together with an anvil, exhibiting a 

complete cohesion (Fig. 3(a)). Still, reduction in a sample thickness occurs by flow of 

material from this zone into shear band. It follows from Figs. 2(b) and (c) that geometry 
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of PT zones for k=5 and 10 are mutually similar but differ from the cases for k=1, 

because the torsion does not spread within a thin PT and shear band only but through the 

whole sample, and plastic strain and the high pressure phase accumulate in the entire 

region from the symmetry plane to contact surface (Fig. 3).  

  
(a)        (b) 

   
(c)        (d) 

FIG. 3. Distribution of accumulated plastic strain q with rising rotation angle   under a 

constant axial compressive force F=3.75, for 2 10.2y y  , and 0.72r R  . (a) 

k=1, (b) k=5 and (c) k=10, all for the model with sliding and friction coefficient 

0.3  ;   (d) k=10 for model with cohesion. Rotation angle is (1) 0, (2) 0.1, (3) 

0.2, (4) 0.4, (5) 0.6, and (6) 0.9. The maximum q at 0.9   in the sample is 32.7, 

50, 26.2, 30.1 for k   1, 5, 10 in contact models and k 10 in cohesion model 

respectively. 

 By comparing Figs. 2(c) and (d), it is evident that PT propagates faster when 

contact sliding is taken into consideration. This is true even without torsion ( 0  ), 

which is consistent with results in Ref. 15. In all cases in this paper, torsion leads to the 
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reduction in the sample thickness, as it was expected from simple analytical model3. 

However, thickness reduces more intensively with contact sliding, which leads to the 

increased “homogeneous” contribution to the plastic strain in the entire sample in 

comparison with the cohesion boundary condition. Indeed, accumulated plastic strain in 

the center of a sample, where PT occurs, grows faster for the contact model  than for 

cohesion model (See in Fig. 3 (c) and (d)). There is a wider inclined yellow band with 

high accumulated plastic strain  0.14 0.5r R   in Fig 3(c) than that in cohesion 

model, which connects symmetry plane and contact plane. This leads to intensification of 

the PT in the entire sample where p>
dp . On the other side, for cohesion model plastic 

strain has stronger localization and accumulation near contact surface, but it mostly 

affects the region 0.5r R  , where PT does not take place due to low pressure. Also, 

during torsion at a fixed axial force, due to condition of complete cohesion, accumulated 

plastic strain at the inclined surface B C   in Fig. 1(c) is artificially extremely large. 

However, when sliding is allowed, it occurs in this region due to small contact normal 

stress, and there is no plastic strain in the region close to the point C  at all.  

Evolution of pressure p and high-pressure phase concentration c on the contact 

surface with the increasing rotation angle   at fixed axial force is plotted in Fig. 4. One 

can note from Fig. 4(a) for k=1 that: 1) pressure grows from the periphery towards the 

center, which is followed by a drop of pressure due to volume reduction during the PT, 

and then it continues to rise again till the center of sample; 2) pressure at the center of a 

sample is higher than minimum pressure for direct PT 
dp  but concentration is almost 

zero due to absence of plastic strain (see Fig. 3(a)), and 3) when rotation angle increases 

from 0.4 to 0.6, convective radial expansion (due to axial contraction) of PT zone without 
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further PT is found because pressure is in the range 
r dp p p   , where both direct and 

reverse PTs could not occur. Fig. 4(b) for k=10 shows that the pressure oscillations 

reduce due to more homogenous distribution of high-pressure phase and PT could not 

attain contact surface outside center of sample  0.3 0.45r R   due to low pressure. 

Comparing solutions with and without contact sliding (Fig. 4 (b) and (c)), one can note 

that a higher pressure in the central zone for contact model (in addition to larger plastic 

strain) leads to a faster increase in c and broader completed high pressure phase region.  

Note that oscillatory pressure distribution at the contact surface for weaker high-

pressure phase was observed in experiments for CuI23 and ZnSe7. Also, pressure increase 

at the center of a sample during rotation in Fig. 4, despite the volume reduction during 

PT, is consistent with experiments for ZnSe in Ref. 7. 
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                (a)                                               (b)                                             (c)  

FIG. 4. Distributions of dimensionless pressure p and high-pressure phase concentration c 

at the contact surface during torsion under constant axial force F=3.75 for 

2 10.2y y  . (a) k=1 and (b) k=10 (both for contact model), and (c) k=10 for 

cohesion model. Rotation angle is (1) 0, (2) 0.1, (3) 0.4, (4) 0.6, and (5) 0.9. 

Equal strength phases 

For strain-induced PTs for equal strength phases, results are completely different 

than in previous section, because of lack of phase softening, material instabilities, and 

strain and PT localization. The distribution of high-pressure phase in Fig. 5 is more 
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regular; it is concentrated at the center of a sample, where pressure exceeds dp
; and with 

the increase in parameter k, the rate of PT for contact model grows and width of two-

phase region reduces. While for k=1 in Fig. 5(a) PT region is relatively small and PT is 

not completed in the major part of the region, for k=5 and 10 the entire central part of a 

sample is getting completely transformed. By comparing Figs. 5(b) with (d), the 

reduction in thickness is faster for the contact model than for case with cohesion, which is 

the primary source for larger accumulated plastic strain in the PT zone and intensification 

of PT when sliding is allowed.  

  
(a)        (b) 

  
(c)        (d) 

FIG. 5. Evolution of distribution of high-pressure phase c  with increasing rotation angle 

  under a constant compressive axial force F=3.75, for k=1, 5, and 10, 2 1y y  , 

and 0.72r R  . Rotation angle is (1) 0, (2) 0.1, (3) 0.2, (4) 0.5, (5) 0.8, (6) 1.2. (a) 

k=1, (b) k=5, and (c) k=10 for contact model, and (d) k=5 for cohesion model. 
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Distributions of pressure and concentration of high-pressure phase at the contact 

surface are presented in Fig. 6. For contact model in Fig. 6 (a) and (b), when   changes 

from 0.1 to 0.5, PT propagates very fast at the contact surface and pressure increases at 

the center of sample and decreases at the periphery. However, further increase in rotation 

angle does not lead to essential PT progress and pressure does not change significantly as 

well. This is because region where pressure exceeds dp  is almost completely transformed 

and expansion of the radius of high pressure phase occurs due to radial flow below dp . 

For cohesion model in Fig. 6 (c), pressure monotonously grows in PT region during 

torsion and PT is not completed. Comparison of Fig. 6(a) and Fig. 6(c) shows that 

allowing for contact sliding promotes PT both due to larger plastic strain and higher 

pressure in a broader region. 
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                           (a)                                                       (b)                                                (c) 

FIG. 6. Distributions of dimensionless pressure p and high-pressure phase concentration 

c  at the contact surface under constant axial force F=3.75 with 2 1y y   for 

contact model (a) with k=5 and (b) with k=10, and for cohesion model (c) with 

k=5. Rotation angle is (1) 0, (2) 0.1, (3) 0.5, (4) 0.8, (5) 1.2. 

Distribution of the rotation angle   of the material points at the contact surface 

with respect to symmetry plane is shown in Fig. 7 for contact model for different 

rotations of an anvil 2  (which corresponds to   in the region with r very close to 0). 
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For cohesion model, 2   and all curves are horizontal. Horizontal parts in Fig. 7 

for small r also mean that there is complete cohesion for these points. Sliding increases 

with increasing r. With the increasing rotation angle, slip occurs in a wider region and for 

2 0.6  , there is only very small region  0.08r R   without slipping. This is different 

from the case with a weaker high pressure phase, because during phase softening for 

2 10.2y y  , the critical shear stress on contact surface could be much larger than the 

shear yield strength of high-pressure phase. That is why torsion of the contact surface 

transfers to the region with lower strength and leads to broader complete cohesion region 

at the sample center. One also can note that with the growth of kinetic parameter k, the 

slipping does not change significantly in Fig. 7. We would like to mention that the 

assumption in analytical model3 that the rotation angle   is the same along the radius 

does not have support from the current results. 
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                                             (a)                                                                   (b) 

FIG. 7. Distribution of the rotation angle   of the material points at the contact surface 

with respect to symmetry plane under constant axial force F=3.75 for (a) k=5 and 

(b) 10, 2 1y y  , and contact model for different angles of anvil rotation 2  

which correspond to   for r close to 0.  
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Stronger high-pressure phase 

We will discuss the simulation results for stronger high-pressure phase  2 15y y  , 

which are qualitatively similar to those for equal strengths of phases. Fig. 8 shows that 

PT starts at the center of sample and then propagates towards the contact surface and 

periphery. With the increase in rotation angle, the thickness of sample gradually reduces 

because of materials flow from the center to the periphery. With growth of kinetic 

parameter k, the rate of PTs increases and the width of two-phase region become thinner. 

It could be seen in Fig.8 (d) that at 1.1  , a quite sharp interface separates sample into 

complete high- and low-pressure phases. Comparing with cohesion model, the thickness 

of sample in contact model reduces much faster, which induces larger accumulated 

plastic strain and accelerates the PT.  

Distribution of dimensionless pressure p and concentration c of high-pressure 

phase at the contact surface is presented in Fig. 9. In the PT zone, pressure increases 

significantly during PTs when rotation angle increases from 0.1 to 0.5, despite the 

volume reduction during the PT. This reproduces the pressure self-multiplication effect, 

which was experimentally observed in Refs. 2, 4, 9, 24. The reduction in sample 

thickness during torsion compensates the transformation-induced volume reduction; 

higher yield strength for high-pressure phase induces a rising friction stress (see Fig. 

10(c)), and consequently leads to an increase in pressure. The pressure growth at the 

center of a sample during PT provides a positive feedback to accelerate PT kinetics, and 

also leads to pressure reduction at the periphery to keep a constant axial force. Small 

"steps" in the pressure distribution localized in the two-phase region become more 

obvious with growth of the kinetic parameter k in our simulations. Such steps have been 
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observed in experiments for KCl and fullerene2, 4, 9, 24. Pressure at these steps is between 

rp
and dp , which helps in determination of these parameters from experiments. Similar 

to the previous cases for weaker and equal-strength high pressure phases, larger growth 

of pressure and larger plastic strain in the center of a sample for contact model 

accelerates the PT kinetics in comparison with cohesion model in Fig. 9(d). 

  
(a) (b) 

  

(c)        (d) 

FIG. 8. Distribution of concentration of high-pressure phase c  with increasing rotation 

angle   under a constant compressive axial force F=3.99 for k=1, 5, and 10; 

2 1y y  , and 0.72r R  . Rotation angle is (1) 0, (2) 0.1, (3) 0.2, (4) 0.5, (5) 0.8, 

(6) 1.1. (a) k=1, (c) k=5 and (d) k=10, all for the contact model, and (b) k=1 for 

cohesion model. 
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FIG. 9. Distributions of dimensionless pressure p  and high-pressure phase concentration 

c  at the contact surface under constant axial force F=3.99 for 2 15y y  . 

Rotation angle is (1) 0, (2) 0.1, (3) 0.5, (4) 0.8, (5) 1.1. (a) k=1, (b) k=5 and (c) 

k=10 for contact model and (d) k=1 for cohesion boundary conditions. 
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                               (a)                      (b)                                             (c) 

  

FIG. 10. Distribution of the dimensionless radial zr (a), circumferential z (b), and 

resultant friction stresses   (c) at the contact surface normalized by 1y , for the 

contact model, under constant axial force F=3.99 for k  5 and 2 15y y  . 

Rotation angle is (1) 0, (2) 0.1, (3) 0.5, (4) 0.8, (5) 1.1. 

Fig. 10 shows the dimensionless radial zr , circumferential z , and resultant 

friction stresses 2 2

rz z     at the contact surface normalized by 1y . At 0  , there 

is no circumferential component of friction stress and shear stress rz  at the periphery 

attains the shear strength limit 1y  due to intense material flow towards periphery during 

compression. With the growth of rotation angle  , both radial zr  and torsional z shear 

stresses  at the contact surface are almost homogenous in the low-pressure phase region; 

increase in z  is accompanied by a reduction in zr to keep constant magnitude of the 

friction stress 1y  . At the initial stage of torsion, 0.5  , both radial zr  and torsional 

z shear stresses  in the transforming region grow because of the increase of material 

strength during PT. At the later stage 0.5  , when PT is almost completed in the region 

with 
dp p  (see Fig. 9 (b)) and material strength does not change anymore, the increase 

of circumferential friction stress z  is accompanied by the reduction of radial 
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component 
zr  to keep the magnitude of the friction stress 2y  . We should mention 

that the radial component zr  drops to a value slightly lower than zero in the region 

0.03r R   because of a small volumetric reduction during PT there and a radial flow to 

the center; such a radial flow to the center is observed in experiments7. 

5.4 Effects of friction on phase transformation and plastic flow  

In this section, the effects of friction coefficient   on PT and plastic flow will be 

analyzed, and slipping and cohesion models will be further compared, considering 

examples for 2 1y y   and k=5. 

  
(a)   (b) 

  
(c)   (d) 

FIG. 11. Change in concentration of high-pressure phase c with growing rotation angle   

under a constant compressive axial force F=3.75, for k=5, 2 1y y  and 

0.72r R  . Rotation angle is (1) 0, (2) 0.1, (3) 0.2, (4) 0.5, (5) 0.8, (6) 1.2. (a) , 

(b) and (c) are for the contact model with friction coefficients of 0.1, 0.3 and 0.5, 

respectively; (d) is for cohesion model. 
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 Fig. 11 shows the evolution of high-pressure phase concentration for the contact 

model ( 0.1  , 0.3 and 0.5) and cohesion model. For compression, there is clear 

intensification of PT with transitions from cohesion to sliding and with reduction of the 

friction coefficient, which is consistent with our previous results15. For torsion, results are 

not so monotonous. It is clear that sliding promotes PT in comparison with cohesion 

conditions for any of friction coefficient and rotation angle. However, the effect of 

friction coefficient is more sophisticated. For  0.1  , when   increases from 0.1 to 0.3, 

concentration c reduces at the center and contact surface. When   increases from 0.3 to 

0.5, concentration c increases at the center but reduces near contact surface. For 0.2  , 

when    increases from 0.1 to 0.3, concentration c again reduces at the center and 

contact surface, but it changes slightly when   increases from 0.3 to 0.5. For  0.5  , 

concentration of the high pressure phases is close for all of the friction coefficients under 

study. Finally, for 0.8  , concentration c  =0.3 and 0.5 is close but radius of high 

pressure zone and fully transformed high pressure phase is larger for  =0.3 and 0.5 than 

for 0.1. Such a nonmonotonous effect of the friction coefficient is caused by 

sophisticated, inhomogeneous, and nonlinear interaction between plastic strain and 

pressure fields (Figs. 12 and 13), torsion-induced reduction in sample thickness (Fig. 14), 

and radial and torsional friction stresses (Figs. 15 and 16) at the contact surface. 

Remarkably, for  =0.1, slight reverse PT occurs for  0.5   (Fig. 11(a)) because of 

local pressure reduction (Fig. 13(a)). 
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(a)      (b)  

   
(c)          (d) 

FIG. 12. Distribution of accumulated plastic strain q, for k=5, 2 1y y  , 0.72r R  , 

friction coefficient (a)  0.1, (b)  0.3, and (c) 0.5; (d) is for cohesion 

model. Rotation angle is (1) 0, (2) 0.1, (3) 0.2, (4) 0.5, (5) 0.8, (6) 1.2. 
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(a)      (b) 

      
(c)      (d) 

FIG. 13. Distribution of pressure for k=5, 2 1y y  , friction coefficient (a) 0.1, (b) 

 0.3, and (c) 0.5; (d) is for cohesion model. Rotation angle is (1) 0, (2) 0.1, 

(3) 0.2, (4) 0.5, (5) 0.8, (6) 1.2. Magenta region corresponds to 
r dp p p    and 

none of the PTs occurs in it. 

With the growth of friction coefficient  , accumulated plastic strain also does not 

change monotonously in PTs zone (Fig. 12). One of the contributions to plastic strain 
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comes from the reduction in sample thickness during torsion (Fig. 14). The smallest 

reduction is for cohesion model; results for  =0.5 and 0.3 are very close, and the largest 

reduction is for  =0.1.   Circumferential deformation produces large contribution to 

accumulated plastic strain, but it is localized close to the contact surface in the region 

0.5r R  , where the maximum accumulated plastic strain in the sample is located but PT 

does not occur due to low pressure. In particular, the maximum accumulated plastic strain 

at 1.2   is equal to 3.72 ( 0.1  ), 5.5 ( 0.3  ), and 7.26 ( 0.5  ) respectively. For 

cohesion model, a shear band is formed in the first layer of finite elements with the 

maximum plastic strain q=33.1 at 1.2   (Fig. 12(d)). Thus, for a cohesion model 

solution is in principle mesh dependent, which is overcome in the contact model; in 

contact model, shear strain reduction from the contact surface to symmetry plane occurs 

gradually and for fine mesh is independent of the number of finite elements. In addition, 

sliding occurs in the inclined surface B C   (see Fig. 1(c)) in contact model, which avoids 

appearance of artificial large accumulated plastic strain in the region close to the point 

C  in cohesion model.  

Pressure distributions are presented in Fig. 14. At the initial stage of torsion 

0.5  , pressure in PT zone is higher for smaller friction coefficient, which promotes 

PT. At larger rotations, the area of the red zone with maximum pressure is the smallest 

one for  0.1. However, since the central region is completely transformed, this does 

not affect PT. What is important is the location of magenta region, in which r dp p p    

and neither direct nor reverse PT occurs in it. High pressure phase is moved to this region 

by convective radial flow or this region moves toward high pressure phase. For  0.1, 
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due to moving of magenta region toward the center, high pressure phase even reaches 

region with rp p  and reverse strain-induced PT starts. For  0.3 and 0.5, magenta 

region also moves toward the center but the reverse PT does not start. For cohesion 

model, motion of “no-transformation” region is quite small. Since region with direct PT 

was smaller than for contact problems for any rotation angle, and reduction in thickness 

and convective flow of the high pressure phase was smaller as well, the final radial size 

of the transformed zone for cohesion is smaller than for contact problem for any .  
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FIG. 14. Thickness of the sample 0h H in the deformed state normalized by initial 

thickness 0H in the undeformed state versus rotation angle   for k  5, 2 1y y  , 

 0.1, 0.3 and 0.5, and cohesion model. 

Note that radial flow of high pressure phase into low pressure region may lead to 

misinterpretation of experimental results. Indeed, experimentalists report PT pressure as 

the lowest pressure measured at the points where high pressure phase is detected. If high 

pressure phase flowed to the region in which r dp p p   , it will not transformed back; if 

it flowed to the region in which rp p , reverse PT may not complete. Thus, 

experimentalists may report PT pressure lower than the actual value. Allowing for 
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contact sliding promotes radial flow and increases the probability and magnitude of 

misinterpretation. 

Distribution of radial zr and torsional z friction stresses in Figs. 15 and 16 shed 

some light on the occurring processes. For 0.1   and 0  , friction stress could not 

reach the yield strength in shear because sliding starts when the critical shear stress n  

is attained. Low friction caused large reduction in thickness during compression. Similar, 

during torsion the magnitude of the friction force   did not reach y  and both radial and 

circumferential friction stresses reduce linearly for 0.4r R  . However, the magnitude of 

the friction force   reaches y  for 0.3   in quite large region, both for compression 

and torsion, which limits radial flow and thickness reduction. The same is true for 

0.5  , which explains small difference between these two cases. 
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(a)        (b) 

FIG. 15. Distribution of dimensionless radial friction stresses zr  at the contact surface 

for k=5, 2 1y y  , (a) 0.1   and (b) 0.3  . 



www.manaraa.com

148 

 

 

 2. =0.1 

 3. =0.5

 4. =0.8 

 5. =1.2 

0.0 0.2 0.4 0.6 0.8
0.00

0.25

0.50

0.75

1.00 =0.1
5

4


z

2

3

 2. =0.1 

 3. =0.5

 4. =0.8 

 5. =1.2 

0.0 0.2 0.4 0.6 0.8
0.00

0.25

0.50

0.75

1.00

=0.3

5

4


z 2

3

 
(a)        (b) 

FIG. 16. Distribution of dimensionless circumferential friction stresses z  at the contact 

surface for k=5 and 2 1y y  , (a) 0.1   and (b) 0.3  . 

   
(a)      (b) 

   
(c)      (d) 

FIG. 17. Concentration c  of a weaker  2 10.2y y   high-pressure phase with rising 

accumulated rotation angle   under constant compressive axial force F=3.75, 

for k=10, and 0.3  . After first rotation with 0.05i  (a) and 0 002. (c), 

respectively, back and forth rotation with the increments | | 0.1i  (a) and 

0 004. (c), is performed; (b) and (d): unidirectional rotation is applied. 
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FIG. 18. Distribution of dimensionless circumferential z (a), radial zr (b), and resultant 

 (c) friction stresses at the contact surface for the contact model, k  10, and 

2 10.2 y y , under constant axial force F=3.75. After first rotation with, back 

and forth rotation with the increments | | 0.1i   is applied. 

5.5 Effects of change in rotation directions  

In the previous sections, diamond anvil was rotated in one direction. In many 

experiments, back and forth rotations with different magnitude are utilized25. One of the 

reasons for such a loading is that it leads to smaller radial shift of the center of one anvil 

with respect to another, reducing misalignment and probability of breaking anvils. 

Keeping geometry closer to axisymmetric also increases accuracy of pressure 

measurement. However, such a loading was never studied numerically to find out what 

are the differences in comparison with unidirectional rotation. This problem will be 

treated in this Section. We define the accumulative rotation angle between one anvil and 

symmetry plane, | |i

i

   , where i  is the rotation increment relative to the 

symmetry plane for back (negative) or forth (positive) anvil rotation. In Fig. 17, after first 

rotation with 0.05i  and 0.002 , respectively, back and forth rotation with the 

increments | | 0.1i   and 0.004 , respectively, are compared with the unidirectional 

rotation with the same accumulated rotation in terms of concentration distribution. There 
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is no obvious difference in high-pressure phase concentration c for | | 0.1i   and there 

is slightly larger fully transformed zone for unidirectional rotation for | | 0.004i  . Fig. 

18, which exhibits variation of the circumferential z , radial zr , and resultant  friction 

stresses after change in rotation direction allows one to better understand the reasons for 

the above results. The circumferential friction stress reduces its magnitude, changes 

direction, but then practically restores its magnitude at 0.0795  . The distribution of 

the radial friction stress slightly oscillates during this process but in the first 

approximation can be considered unchanged. The distribution of the resultant friction 

stress restores faster than the circumferential stress. While for 0.05 0.0652   

cohesion condition is satisfied at the periphery, for 0.0652  contact slip occurs again, 

making conditions close to those before change in rotation direction. Thus, there is a 

small difference between conditions for unidirectional and two directional rotations, 

which cause small differences in concentration distribution, but these changes accumulate 

with increasing number of cycles. Because total number of back and forth cycles is just 4 

at 0 45.  , there is no obvious change in concentration distribution in Figs. 17(a) and 

(b). However, when the number of cycles increases, e.g., to 19 in Fig. 17 (c), the obvious 

reduction in high-pressure phase concentration is found. This reduction is related to 

change in contact conditions at the periphery from slipping to cohesion for some rotation 

stage, which reduces radial flow and plastic strain, and further leads to slower PT 

kinetics.  
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5.6 Concluding remarks 

In this paper, the effect of contact sliding and friction coefficient at the anvil-

sample contact surface on the pressure distribution, plastic flow, and strain-induced PT is 

studied during torsion at the constant axial force in RDAC using FEM and code 

ABAQUS. User subroutines USDFLD and HETVAL are implemented to consider a 

stain-controlled kinetics for PT. Coulomb and plastic friction are combined, which are 

implemented with the help of user subroutine FRIC. Results are obtained for weaker, 

equal-strength, and stronger high pressure phases and for three values of the kinetic 

coefficient k. Cohesion model possessed three main drawbacks: (a) shear band was 

developed near the contact surface in the one finite element wide layer, i.e., solution was 

mesh-dependent; (b) cohesion at the conical surface where pressure is small and large 

sliding is expected is very artificial and leads to artificial large plastic deformation in that 

region; (c) increased resistance to the radial plastic flow suppresses it as well as reduction 

in thickness leading to unrealistic redistribution of plastic deformation and concentration 

of high pressure phase. All these drawbacks are overcome in the current contact 

formulation. Thus, contact sliding leads to gradual reduction in shear strain away from 

the contact surface and for fine mesh it is independent of the number of finite elements. 

Sliding at the conical surface eliminates plastic strain in the adjacent region. In 

comparison with complete cohesion model, sliding and reduction in friction coefficient 

intensify radial plastic flow, which leads to larger reduction in sample thickness and 

“homogeneous” contribution to the plastic strain. Larger plastic strain and increased 

pressure in the central region, as well as growth of the region where p>
dp  lead to 

intensification of PT. Reduction in plastic strain in the shear band near contact surface 
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does not affect PT essentially, because it occurs in the region 0.5r R  , where PT does 

not take place due to low pressure. Sliding increases with increasing r and rotation angle 

and is weakly dependent on the kinetic coefficient k. Also, with the increasing rotation 

angle, slip occurs in a wider region closer to the center. However, for a weaker high 

pressure phase, shear localization occurs within a volume due to phase softening. 

Cohesion zones also do not change as fast as for equal and higher strength phases. The 

assumption in analytical model3 that the rotation angle of the material points at the 

contact surface is the same along the radius does not correspond to the obtained results. 

For compression, there is a clear intensification of PT with reduction of the friction 

coefficient. For torsion, results are not monotonous. PT is promoted in one region but 

decelerated in another, depending on the friction coefficient and rotation angle. Such a 

nonmonotonous effect of the friction coefficient is caused by sophisticated, 

inhomogeneous, and nonlinear interaction between plastic strain and pressure fields, 

torsion-induced reduction in sample thickness, and radial and torsional friction stresses at 

the contact surface. Remarkably, for  =0.1, slight reverse PT occurs for 0.5   

because of local pressure reduction. Convective radial flow of high pressure phase into 

low pressure region (where it cannot appear) may lead to misinterpretation of 

experimental results: experimentalists report PT pressure as the pressure measured at the 

points where high pressure phase is detected, i.e., they may report PT pressure lower than 

the actual value. Allowing for contact sliding promotes radial flow and increases the 

probability and magnitude of misinterpretation.  It is found that back and forth rotation of 

an anvil slightly decelerates PT progress in comparison with unidirectional rotation and 

this can be visible after large number of cycles. Several experimental phenomena, 
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including pressure self-multiplication effect at constant axial force (despite the volume 

reduction due to PT), small steps at pressure distribution, flow to the center of a sample, 

and oscillatory pressure distribution for weaker high-pressure phase, are reproduced and 

interpreted. 

Developed approach allows us to address strain-induced PT in a two material 

system, i.e., sample within gasket, which is often used in experiments 6, 8, 9. With 

cohesion condition, sample-gasket boundary would be artificially fixed at the diamond 

surface. Considering sample with gasket and providing quasi-homogeneous pressure 

distribution9 will allow us to develop a method of determination of PT kinetic equation 

from experiments. 
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Abstract 

Combined high pressure phase transformations (PTs) and plastic flow in a sample 

within a gasket compressed in diamond anvil cell (DAC) are studied for the first time 

using finite element method (FEM). The key point is that phase transformations are 

modelled as strain-induced, which involves a completely different kinetic description 

than for traditional pressure-induced PTs. The model takes into account contact sliding 

with Coulomb and plastic friction at the boundaries between the sample, gasket and anvil. 

A comprehensive computational study of the effects of the kinetic parameter, ratio of the 

yield strengths of high and low-pressure phases and the gasket, sample radius and initial 

thickness on the PTs and plastic flow is performed. A new sliding mechanism at the 

contact line between the sample, gasket, and anvil called extrusion-based pseudoslip is 
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revealed, which plays an important part in producing high pressure. Strain-controlled 

kinetics explains why experimentally determined phase transformation pressure and 

kinetics (concentration of high pressure phase vs. pressure) differ for different geometries 

and properties of the gasket and the sample: they provide different plastic strain, which 

was not measured. Utilization of the gasket changes radial plastic flow toward the center 

of a sample, which leads to high quasi-homogeneous pressure for some geometries. For 

transformation to a stronger high pressure phase, plastic strain and concentration of a 

high-pressure phase are also quasi-homogeneous. This allowed us to suggest a method of 

determining strain-controlled kinetics from experimentation, which is not possible for 

weaker and equal-strength high-pressure phases and cases without a gasket. Some 

experimental phenomena are reproduced and interpreted. Developed methods and 

obtained results represent essential progress toward the understanding of PTs under 

compression in the DAC. This will allow one optimal design of experiments and 

conditions for synthesis of new high pressure phases. 

6.1 Introduction 

A DAC is a powerful and primary tool to generate high pressure and in-situ study 

the material physical behavior and PTs to high pressure phases, by using advanced 

diagnostics, such as Raman, x-ray, and optical techniques.1-5 In some cases the material 

under study is compressed between two diamond anvils without any external support,6-8 

i.e., the external part of the sample serves as a gasket for the internal part, which is under 

high pressure. However, in most cases9-14, the sample is placed inside of a deformable 

gasket made of a material with different strength. If achieving maximum possible 

pressure in a reasonably large volume is the goal, the gasket is made of the strongest 
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possible materials, such as T301 stainless steel13, rhenium10, 15, and even diamond 

powder16. If the goal is just to avoid an intense flow of powder sample at the initial stage 

of compression, a weak gasket could be made of polymer, paper, or cardboard. 

Utilization of the gasket, in particular, allows one: 1) Performing experiments under 

hydrostatic conditions by filling gasket hole with fluid, in which sample is placed. 2)  

Performing experiments under reduced nonhydrostatic (deviatoric) stresses by filling the 

gasket hole with media with low yield strength (e.g., neon, argon, mixture of methanol 

and ethanol, cesium iodide17, and sodium chloride17, 18), in which the sample is placed. 3) 

Reducing plastic flow in a sample from the center and causing flow to the center, thus 

increasing pressure level. 4) Reducing radial pressure gradients and even producing an 

almost homogeneous pressure distribution19, 20. This allows one to perform a quantitative 

study of phase transformations and achieve complete phase transformation in a sample. 

This also reduces the probability of fracture of an anvil, because without the gasket, 

pressure grows at the center above the level required for transformation, or grows at the 

center after completing phase transformation in the central region during transformation 

at the periphery. Detailed discussions of the effect of a gasket can also be found in Refs. 

11, 21, 22. 

Within a liquid the sample is subjected to hydrostatic loading and undergoes 

pressure-induced phase transformations. Without hydrostatic media, or above the 

solidification pressure for transmitting media, the sample is under nonhydrostatic stresses 

or stress tensor. Moreover, if there is an irreversible reduction in the sample thickness, 

significant plastic straining in the sample may drastically affect phase transformations 

through changing their mechanism, as it was recognized in Refs. 23, 24. For pressure-
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induced or stress-tensor-induced phase transformations below the yield strength of the 

material, a high pressure phase nucleates at pre-existing defects, e.g., dislocations, that 

represent pressure and stress concentrators. In contrast, plastic strain-induced PTs under 

high pressure occur by nucleation at new defects, which are continuously generated 

during plastic deformation23, 24. Thus, dislocations as the main kind of defects are 

generated and densely piled up against grain boundaries or other obstacles during plastic 

flow, which creates a strong concentrator of the stress tensor and may lead to an obvious 

reduction of threshold pressure for PTs. For example, the rhombohedral-to-cubic boron 

nitride (rBN-to-cBN) transformation under compression without hydrostatic media starts 

at 5.6 GPa8, while it takes place at 55Gpa under hydrostatic conditions9. A corresponding 

analytical model23 and much more detailed finite element simulations25 are developed to 

elucidate strain-induced nucleation at dislocation pile ups. The best way to study strain-

induced PTs and the effect of plastic strain on thermodynamics and kinetics of PTs is to 

utilize combined compression and torsion loading in a rotational diamond anvil cell19, 20, 

26-29. However 23, 24, there is no fundamental difference between strain-induced PTs under 

plastic compression in traditional DAC and under pressure and shear in rotational DAC 

in terms of mechanism, thermodynamics, and kinetics. The only difference is in the 

pressure-plastic strain loading path: while in rotational DAC one can increase plastic 

strain at constant pressure, in traditional DAC both pressure and plastic strain grow 

during compression of a sample, and the effect of plastic strain on PT thermodynamics 

and kinetics is not easy to separate. 

In experiments under nonhydrostatic conditions in DAC, PT is characterized by 

pressure for initiation of transformation (e.g., Refs. 8, 12, 18) and, in rear cases, for 
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completing PT, and the pressure-concentration of high pressure phase curve20. Results for 

the same materials differ essentially in different papers12, 17-20, 30. In some cases the reason 

is specified, e.g., transmitting media with different yield strength (degree of 

nonhydrostaticity)18.  In most cases without transmitting media, the reasons for 

discrepancy are not clear. However, if one would consider PT as strain-induced rather 

than pressure-induced, the difference is caused by different plastic strain, which was not 

measured. Different geometric parameters and elastoplastic properties of the gasket and 

sample lead to different plastic strains and, consequently, transformation pressure and 

pressure-concentration of high pressure phase curves. Thus, experimental results do not 

characterize thermodynamic and kinetics of a sample material but represent complex 

behavior of the sample-gasket (and, at very high pressure, anvil) system. This is also the 

reason that the threshold pressure for PTs under non-hydrostatic condition differs for 

different types of high-pressure apparatuses, due to distinct degrees of plastic flows. For 

example, when different gaskets and high-pressure apparatuses are utilized, PT of the 

highly ordered hexagonal BN to wBN are found at 9.6 GPa19, 20, 10 Gpa12 and 12.5 Gpa30 

respectively. 

Thus, there is clear necessity to consider phase transformations under 

compression of a sample in a gasket as strain-induced rather than pressure-induced. 

Note that pressure-induced PTs in DAC have been modelled in Refs. 31, 32 using theory 

developed in Refs. 33, 34 and FEM algorithm in Refs. 35, 36, which are very much 

different from the current paper. Since plastic strain field in a sample is not measured 

directly, the only way to gain understanding and develop combined experimental and 

theoretical methods of characterization is to develop corresponding models and perform 
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simulations. In comparison with pressure-induced PTs, strain-induced ones are not just 

terminologically different, but require completely different thermodynamic and kinetic 

descriptions, as well as experimental characterization. Nanoscale models and 

mechanisms of strain-induced PTs at dislocations generated during plastic flow are 

presented in Refs. 23, 25. Based on the understanding gained at the nanoscale, a 

microscale theory is developed23, 37.   In this theory, strain-induced PTs are described 

(characterized) by a pressure-dependent, strain-controlled (instead of time-controlled) 

kinetic equation (see Eq. (8)), for concentration of the high-pressure phase c, which 

depends on four main parameters: (1) kinetic parameter k, which scales the rate of PTs, 

(2) the minimum pressure 
dp , below which direct strain-induced PT does not take place, 

(3) the maximum pressure 
rp , above which reverse strain-induced PT cannot occur, and 

(4) the ratio of yield strengths of low ( 1y ) and high-pressure ( 2y ) phases. This is an 

equation which ideally should be found from experiments. However, it was not done 

before because there is only one paper20 where the distribution of concentration of high-

pressure phase along the contact surface diamond-sample was measured and plastic strain 

distribution was not measured in literature at all. That is why the simulation of strain-

induced PTs in DAC38-41 and rotational DAC42-44 have been performed for generic 

material and the effect of the four material parameters above have been elucidated. 

Simulations first have been performed with complete adhesion between sample and 

diamond39-41, 43, 44 and then with allowing for contact sliding38, 42, and it was demonstrated 

that contact sliding significantly affects all fields and should be included. However, all 

these papers are devoted to sample without gasket. It is known from experiments that 

pressure distribution, and character and intensity of plastic flow with and without the 
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gasket are completely different. That is why in the current paper we will study for the 

first time strain-induced PTs in a sample within a gasket. This is computationally a more 

complex problem, because it contains one more contact surface between sample and 

gasket and, more importantly, contact line between sample, gasket and anvil. This 

introduces additional nonlinearities and often causes divergence of the iterative 

procedure.   

In this paper, strain-induced PTs under compression of a sample in DAC 

including a gasket are modeled and simulated. A coupled problem is solved using FEM 

for PT and mechanics with large plastic flow and contact sliding at all three contact 

surfaces, which thus leads to high complexity in simulations.  The combined effect of the 

following parameters on phase transformation kinetics and heterogeneity of the pressure, 

concentration of high pressure phase, and accumulated plastic strain fields in the sample 

has been studied: kinetic parameter k, which scales the rate of PTs; the ratio of yield 

strengths 2 1y y   of phases; ratio of the yield strength of gasket and sample 1g y  ; 

relative radius and height of a sample. A gasket with essentially higher strength than a 

sample could fundamentally change direction and heterogeneity of plastic flow and 

contact friction, causing a more homogeneous pressure field, which would change PT 

kinetics. It was demonstrated that any pressure p -concentration c of high pressure phase 

curve is not related directly to PT kinetics but represents the behavior of a sample-gasket 

system, which determines the pressure – plastic strain loading curve. That explains why 

gaskets with different strength and geometric parameters change pressure for initiation 

and completion of PT and the entire p-c curve. In particular, the growth of pressure 

required to continue and complete PT is not a necessity or a fundamental property of the 
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PT. It is just consequence that in DAC plastic straining creating nucleation sites cannot 

be produced without pressure increase. If such a straining would be produced at constant 

pressure, like in rotational DAC, PT could occur at much lower pressure (see Refs. 19, 

20, 26-29).  

Many of obtained results are essentially different from previous results38-41 for 

DAC without a gasket or even have opposite trends. Utilization of a gasket changes radial 

plastic flow toward center of a sample, which leads for some geometries to high quasi-

homogeneous pressure. For transformation to a stronger high-pressure phase, plastic 

strain and concentration of high pressure phase are also quasi-homogeneous. This allows 

us to suggest a method of determination of strain-controlled kinetics from experiments. 

This is not possible for a weaker or equal-strength high-pressure phase and case without a 

gasket, for which a completely transformed high pressure phase near the sample-anvil 

boundary is separated from almost an untransformed low pressure phase by a very sharp 

interface. A new sliding mechanism at the contact line between sample, gasket, and anvil 

called extrusion-based pseudoslip is revealed, which plays an important part in producing 

high pressure. Some experimental phenomena are reproduced and interpreted. 

6.2. Problem formulation 

 
A. Geometry and boundary conditions 

A scheme of DAC subjected to an axial compressive force P is shown in Fig. 1 (a). Due 

to symmetries of the load and geometry, a quarter of DAC is taken into consideration. In 

Fig. 1(b), a quarter of an initial undeformed sample (the rectangle oabe ) is encapsulated 

into the gasket’s hole and they contact along the cylindrical surface be . The initial 

thickness of the sample and gasket inner side is 0H ; the thickness of a gasket at the 
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periphery is 1 0H H  1 0H m H  ; sample radius ab is 0sR n H  ; and the radius of flat 

surface of a diamond anvil is 1 05 5R H m H   . Effects of gasket size on PT and plastic 

flow will be studied by changing parameters n and m. The contact algorithm in ABAQUS 

requires the smooth master surface in a contact pair (referring to the surfaces of a 

diamond anvil) to avoid penetration of slave surface (referring to a gasket surface) into it. 

Consequently, a small fillet radius 0 1 2r H  is utilized to substitute the sharp corners of 

the diamond anvil and gasket at point c. The geometry of the inclined contact surface cd 

is shown in detail in Fig.1 (c). The point b in Fig. 1 (b) is the intersection of three 

contacting bodies: sample, anvil, and gasket. Due to smooth contact for each contact pair, 

penetration of slave surface into master surface does not occur and a sharp 90o angle is 

utilized at the corners of the sample and gasket at point b in the initial undeformed state 

in Fig.1 (b). Boundary conditions in Fig. 1(d) are accepted as follows:  

(1) The contact sliding conditions (which will be characterized in Sec. II.C) are 

applied on all contact pairs between three different components, namely the diamond 

with the gasket and sample, and the gasket with the sample. 

(2) At symmetry axis 0r  , shear stress rz  and radial displacement ru  are zero.  

(3) Due to symmetry, the radial shear stress 0rz   and the axial displacement 

0zu   on the symmetry plane z=0.  

(4) Surfaces of the gasket which are not in contact with the diamond anvil or 

sample are stress-free. 
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(a)  

 
(b) 

 
(c) 

 
(d) 

FIG. 1. (a) Diamond anvil cell scheme, (b) a quarter of the sample and gasket in the 

initial undeformed state, (c) geometry of the contact surface in the undeformed 

state, and (d) boundary conditions for sample and gasket in the deformed state. 

B. Material model 

Similar to Refs. 38-44, the simplest isotropic, perfectly plastic model for the sample and 

also for the gasket will be utilized to obtain the generic solutions. The deformation of a 

material is described by the position vector of the particle in the deformed state 

0( , )tr r r , as a function of its position 0r  in the initial (undeformed) configuration and 

time t. The multiplicative decomposition of the deformation gradient, 
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0 e t p     F r r V F F , into symmetric elastic stretch tensor 
eV  , transformational 

tF , 

and plastic pF  contributions is accepted. While elastic and transformational strains are 

assumed small (i.e., e e ε V I and ε V It t  , where I  is the second-rank unit tensor), 

plastic strains and material rotations are large. Since the gasket material does not undergo 

phase transformation, t F I . The justification of the applicability of this perfectly plastic 

and isotropic model independent of the deformation history could be found in Ref. 45 for 

various materials (e.g. rocks, powder, metals) starting with accumulated plastic strain 

0.6 1q   , and under monotonous loading. In addition, for simplification, diamond 

anvils are assumed to be a rigid body in this paper, which is reasonable when small 

elastic strain assumption in the sample and gasket is made (but large plastic deformation 

and sliding are allowed). A total system of equations for the problem of coupled strain-

induced PT and mechanics with plastic flow in a sample is utilized in the simulations as 

follows: 

Decomposing the deformation rate  1
s

d= F F  into elastic (subscript e), transformation 

(subscript t), and plastic (subscript p) components: 

e t p


  d ε I d .                                                      (1) 

Hooke's law for deviatoric and volumetric parts of the Cauchy stress T  

           02 ;
3

s ε
rr zz

e eGdev p K
  


 

     .                            (2) 

Transformation volumetric strain: 

ctt   .                                                                  (3) 

Von Mises yield condition for two-phase mixture 
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.                 (4) 

Plastic flow rule in the elastic region: 

 cyi                         0
p
d .                                     (5) 

in the plastic region: 

 cyi                   p
d s ;    λ ≥ 0 .   (6) 

 

Equilibrium equation: 

0 T .                                                              (7) 

Based on the microscale theories23, 37, strain-induced PTs were characterized in 

terms of strain-controlled, pressure-dependent kinetic equation: 

     

  12

1

2

1

1

10
yy

rr

y

y

dd

cc

pHpcpHpc

k
dq

dc











 .    (8) 

Here c is concentration of high-pressure phase; the accumulated plastic strain q is defined 

by 1/2(2 3 : )p pq  d d ; 
dd

h

d

d
pp

pp
p








  and 

rr

h

r

r
pp

pp
p








  are dimensionless characteristic 

pressures, which are used for direct and reverse PTs; d

hp  and r

hp  are the pressures at 

which direct and reverse PTs occur under hydrostatic loading, respectively;  H is the 

Heaviside step function; subscript s means the symmetric part of tensor; εe



and s


 is the 

objective Jaumann time derivative of the elastic strain and deviatoric stress; 
0e  and 

t are the elastic volumetric strain and transformation volumetric strain for complete PT; 
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K  and G  are the bulk and shear moduli, respectively; i  is the stress intensity or 

effective stress. Parameter λ is iteratively updated by satisfaction of the yield condition 

(4); and subscript y, y1, and y2 are for the yield strength for the sample with 

concentration 0 1c  , 0c  , and 1c  , respectively. 

 For gasket material, which does not undergo phase transformations, Eqs. (3) and 

(8) are irrelevant; in Eq. (1) 0t  ; in Eqs. (4)-(6) c is irrelevant and the yield strength 

y is equal to the yield strength of a gasket yg .  

C. Friction model 

This section focuses on the introduction of the friction model between sample and 

diamond or between sample and gasket. Due to axial symmetry, the direction of relative 

sliding is known (to within its sign): it is along the curve ABCD between diamond and 

sample and gasket, and along the curve BE between sample and gasket, without 

circumferential component. The contact behavior between diamond and gasket is similar 

and even simpler due to an absence of strength changes in materials. In standard 

Coulomb friction, the slippage on the contact surface initiates only when friction stress   

arrives at the critical friction stress crit n   where n  is normal contact stress. While 

standard Coulomb friction is reasonable in the elastic state, once friction stress on the 

contact surface reaches the yield strength in shear 3y y   (von Mises yield 

condition (4) is used here) in plastic state, slipping can occur even if n  . As a 

consequence, the standard Coulomb friction could be modified by redefining the critical 

friction stress as min( , )crit n y   , and conditions of sliding and cohesion are 

separated when friction stress  reaches this value. In principle, the critical friction stress 
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for the contact pair between sample and gasket should be defined as 

min( , , )crit n y yg    , where yg  is the yield strength in shear for gasket. The gasket 

with higher yield strength than sample is utilized in most cases to produce high pressure. 

Therefore, we accept min( , )crit n y   . Theoretically, such a definition of the critical 

friction stress, along with sliding rule, is sufficient for a solution of the contact problem. 

However, in numerical simulations, the sudden change of contact conditions between 

cohesion and slip may result in divergence of results, especially for the large sliding 

problem with complex contact conditions (e.g. at point B in Fig. 1(d), where there are 

three different contact pairs). A penalty method is utilized to make the contact conditions 

continuous, in which cohesion condition will be substituted with a small elastic reversible 

slippage 
eu . While penalty method is a mathematical regularization, this elastic slip 

could be also physically interpreted as elastic deformation of asperities of the thin contact 

layer. In addition, the elastic slip 
eu  should be constrained in the small range to obtain an 

accurate solution, for example, the specified maximum elastic relative slip critu  equals 

0.5% of average element length for fine-meshing models. Note that there are more than 

25 finite elements in the current simulations within half of the thickness of a sample 

along the z-axis. 

One could introduce the magnitude of elastic slip by the simplest linear relation 

with shear stress  , 
e

sk u  , where sk  is elastic slip stiffness. The magnitude of sk  

could be defined by the condition that sliding starts when elastic slip 
eu  reaches the 

prescribed critical value critu . Then one obtains crit s critk u   and s crit critk u . 

Consequently, sk  linearly varies with the normal stress n  or the yield strength in shear 
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y . Coupling between PTs and sliding occurs because y  for the sample is not a constant 

but depends on concentrations and yield strengths of phases by relation: 

  1 21y y yc c     . The complete system of equations for contact pairs is summarized 

below, and to some extent it is similar to that for elastoplasticity theory. 

Decomposing contact relative displacement 
cu  into elastic (reversible) and sliding 

(irreversible) parts: 

c e su u u  .      (9) 

Yield strength in shear: 

  1 21 for sample

for gasket

y y

y

yg

c c 




 
 


.    (10) 

Critical friction shear stress: 

min( , )crit y n   .    (11) 

Rule for elastic contact displacement: 

e crit
n y

y

e crit
n y
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u
u if

u
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

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

 (12) 

Sliding rule below critical shear stress: 

| | crit     →  0su  .    (13) 

Sliding rule at critical shear stress: 

n n y

y n y

if

if

   

   

 


  
 → ( ) ( )sSign u Sign   (14) 
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D. Numerical procedure 

To solve pressure-dependent strain-controlled kinetic Eq. (8), ABAQUS user subroutines 

USDFLD and HETVAL are implemented, in which concentration c is modeled by 

temperature and transformation strain is treated as thermal strain. Further, the coupled 

mechanics and PT problem is simulated by a coupled thermo-plasticity problem.  

For contact pairs between sample and gasket or between sample and diamond 

anvil, the critical friction stress is defined as min( , ( ))crit n y c    and yield strength in 

shear ( )y c  is not constant but depends on concentration c and yield strengths of phases. 

That is the reason why the contact problem could not be solved by the standard procedure 

in ABAQUS and the user subroutine FRIC should be utilized to consider Eqs. (12)-(14). 

For a particular case, when high- and low-pressure phases have the same yield strengths 

 1 2y y  , yield strength in shear is independent of concentration and becomes a 

constant. In this case, the contact problem could be also solved by standard procedure 

without using the subroutine FRIC, which could be utilized to confirm the consistency of 

results obtained with FRIC and the standard procedure. For the contact pair between 

diamond anvil and gasket, standard procedure in ABAQUS can be utilized as well. 

In the dimensionless form, except for friction shear stress normalized by the yield 

strength in shear 1y , all stress-related parameters (e.g., pressure p, parameter 
d

h
p , etc.) 

are normalized by 1y ; the dimensionless compressive force F is the axial force P 

normalized by the product of 1y  and the undeformed contact area (which is equal to the 

area of the surface of revolution produced by complete revolution of the curve abcd  in 

Fig. 1(b) about the z-axis). The related material parameters as follow: 33.75d

h
p  , 
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1r

h
p   , 6.75dp  , 6.375rp  , Young modulus 162.5E  , Poisson's ratio 0.3v  , 

volumetric transformation strain for direct PT 0.1t   , and k=6 if there is no special 

note. In addition, the yield strength for the gasket 13yg y   is utilized in the major parts 

of this paper. A high value of 
d

h
p  and a low value of 

r

h
p , which will not be reached in 

our simulations means that pressure-induced phase transformations are excluded.  

6.3. Simulation results for coupled plastic flow and phase transformation 

Strain-induced PT coupled with plastic flow under high pressure in a sample within a 

gasket will be discussed. As stated in Refs. 38-41, the strength of high-pressure phase 

strongly influences the kinetics of PT and plastic flow in a traditional diamond anvil cell. 

Similarly, in this section, the cases with equal-strength, weaker, and stronger high-

pressure phases will be investigated by assuming 2 1 1, 0.3, 3y y    respectively. In 

addition, the kinetic parameter k in Eq. (8) determines the rate of PT and will also be 

studied. In Fig. 1(b) m=1, n=2 and the gasket yield strength 13yg y   are used 

throughout this entire section; the effects of gasket strength and sizes will be investigated 

in detail in the next section. To understand the effects of PT on the plastic flow and 

pressure, the model without PT will be utilized for comparison.  

A. Equal-strength phases 

For equal strengths between high- and low-pressure phases  2 1y y  , Fig. 2 (a) shows 

that the PT in the sample propagates from the contact surface to the symmetry plane, and 

from the periphery to the center, and that the fully-transformed sample is obtained 

without large reduction of sample thickness, which are completely different from the 

results38-41 in DAC without the gasket. In the previous simulations38-41, the PT progresses 
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from the center to the periphery. Due to the absence of the gasket, there is a large 

pressure gradient and maximum pressure is located at the center of a sample, which 

intensifies the PT kinetics. 

      

                             (a)                                    (b)                                  (c)                

                         

                   (d)   

FIG. 2. Distributions of (a) concentration of high-pressure phase c, (b) accumulated 

plastic strain q, (c) pressure p, and (d) radial displacement 
ru  (normalized by a 

half thickness of undeformed sample
0 2H ) in the sample for 2 1y y  . The 

increasing dimensionless axial compressive force F is (1) 9.22, (2) 10.85, (3) 

11.13, (4) 12.43, (5) 13.29. 
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(a)                                                                       (b) 

FIG. 3. Distribution of pressure p at the contact surface for (a) the model without PTs and 

(b) with PT for 2 1y y  . The dimensionless axial force F is (1) 9.22, (2) 10.85, 

(3) 11.13, (4) 12.43, (5) 13.29. 
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(a)                                                                      (b) 

FIG. 4. Distribution of the friction stress   at the contact surface for the models (a) 

without PT and (b) with PT for 2 1y y  . The dimensionless axial force F is (1) 

9.22, (2) 10.85, (3) 11.13, (4) 12.43, (5) 13.29. 

 

Such a difference in the PT propagation directions in comparison with previous 

results38-41 is caused by obvious distinctions in the distributions of accumulated plastic 

strain and pressure (see in the Figs. 2(b) and 2(c)), which determine PT kinetics. One can 

note that accumulated plastic strain is larger at the periphery and on the contact surface 

than the center and symmetry plane respectively. Larger accumulated plastic strain 
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intensifies the PT kinetics. Before the pressure distribution in Fig. 2(c) is discussed, we 

first consider a simpler case without PT in the sample. Fig. 3(a) shows that the maximum 

pressure is located at the center and pressure gradually reduces from the center to the 

periphery. Friction shear stress in Fig. 4(a) at the contact surface of the gasket reaches the 

yield strength in shear, which is three times of the shear yield strength of a sample. The 

gasket with high yield strength greatly reduces radial flow in a sample, and pressure 

could reach a very high value in the sample before thickness significantly decreases. This 

is in fact one of the reasons for utilization of a gasket in order to produce very high 

pressure in relatively low strength materials. Friction stress in the entire sample and 

gasket in Fig. 4(a) does not change the direction because material flows from the center 

to the periphery under a rising loading. When PT is taken into account, in contrast to 

previous results38-41 in the traditional DAC without a gasket, pressure is quite 

homogeneous and high in the entire sample (see Fig. 2(c) and Fig. 3(b)). Before PT, 

pressure monotonously reduces from the center to the periphery (Fig. 3(a)). With the 

increase in the applied force F from 9.22 to 13.29, PT occurs and the concentration of the 

high-pressure phase grows. Homogeneous and high pressure provides a large driving 

force for fast PT kinetics in the entire sample. Fast volume reduction due to PTs causes 

material flow from the periphery to the center. This is opposite to the case without PT 

and induces the change of shear stress direction. The decreasing pressure with increasing 

radius in Fig. 3(a) changes into an increasing one in the sample at 12 43F .  in Fig. 3(b). 

This is qualitatively consistent with the well-known from the metal forming simplified 

equilibrium equation 
2 zrdp

dr h


   23, 24, 40 . 
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Since radial flow is limited and radial and axial deformation is approximately 

homogeneous, shear deformation makes the main contribution to the heterogeneity of the 

accumulated plastic strain and concentration of the high-pressure phase. Shear stress at 

the center and on the symmetry plane is zero and increases to its maximum in value at the 

periphery and contact surface, which causes larger plastic shear strain at the periphery 

and contact surface (Figs. 2(b) and 4(b)). According to kinetic Eq. (8), high pressure 

(much above minimum pressure 6.75dp  ) and moderate plastic strain intensify PT 

kinetics and further plastic flow to the center due to volume reduction during PT, which 

surpasses the flow to the periphery due to compression. Note that when F changes from 

10.85 to 11.13, pressure in the sample even drops due to intense transformation and 

volume reduction. Without a gasket, the flow to the center could not be found in Ref. 40 

at all and a very slight flow to the center in a small central region was found for faster 

kinetics in Refs. 38, 39, 41. High pressure in the entire sample and limited radial flow due 

to gasket make it possible to obtain a fully-transformed sample without a large reduction 

of sample thickness. This was not the case in a DAC without a gasket, where pressure in 

the periphery is too small to activate nucleation of a high-pressure phase and thickness 

always reduced significantly to cause large enough plastic straining. Due to a rather 

homogenous distribution of pressure in the sample, heterogeneous distribution of plastic 

strain becomes the only player to determine heterogeneity of high pressure phase 

concentration in the sample. Since at F=12.43 PT almost completes,  at F=13.29 pressure 

at the center becomes slightly larger than at the periphery (Fig. 3(b)), because the flow 

from the center to the periphery starts. Indeed, shear stress in the major region of a 
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sample becomes positive at F=13.29 (Fig. 4(b)). Still, the total radial displacement is 

negative (see Fig. 2(d)) because of previous larger flow to the center during PTs.  

While there is a very sharp, approximately horizontal boundary between fully 

transformed and almost nontransformed regions, pressure at this interface is significantly 

higher than 
dp . This is in contrast to compression without a gasket when pressure is 

close to 
dp  at the diffuse interface between fully transformed and nontransformed 

regions38-41. The reason of this difference is because of large plastic strains in Refs. 38-

41, which initiates PT just above 
dp , and small and localized plastic straining here.  

As it was suggested in Ref. 20, quasi-homogeneous pressure distribution 

simplifies the significantly quantitative study of the PT kinetics. It also eliminates the 

misinterpretation of minimum transformation pressure related to radial flow of the 

material transformed at high pressure but convectively moved to low pressure regions. 

Some simplified methods to choose parameters of a gasket to ensure quasi-homogeneous 

pressure and their experimental confirmation for PT from hexagonal to wurtzitic BN have 

been presented in Ref. 20. Current work suggests a much more precise tool for design of 

experiments with a quasi-homogeneous pressure distribution. Still, due to heterogeneity 

of plastic strain and concentration of high-pressure phase in the form of fully transformed 

and almost nontransformed regions divided by a relatively sharp interface, the extraction 

of material parameters in kinetic equation (8) is not easy. One needs to eliminate these 

heterogeneities as well, which is probably possible by computational design of an optimal 

sample-gasket system utilizing current model and numerical approach. 
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B. Weaker high-pressure phase 

We will discuss PT and plastic flow in a sample with weaker high-pressure phase 

 2 10.3y y  , under a rising compressive force F. Due to high-pressure phase with low 

strength, material softening during PT induces instabilities, which do not occur for equal-

strength and stronger high-pressure phases.  

     
                   (a)                                            (b)                                     (c)                

                
                   (d)                   

FIG. 5. Distributions of (a) concentration of high-pressure phase c, (b) accumulated 

plastic strain q, (c) pressure p, and (d) radial displacement 
ru  (normalized by a 

half thickness of original sample
0 2H ) in the sample for 2 10.3y y  . The 

dimensionless axial force F is (1) 8.59, (2) 9.33, (3) 9.69, (4) 10.3, (5) 12.21.  

 

Fig. 5(a) shows the distribution on the concentration c of high-pressure phase in 

the sample during the growth of compressive force F. PT starts at the contact surface of 

the periphery and propagates towards the symmetry plane and the center of sample. 

When the axial compressive force reaches 9.33F  , transformation is almost completed 
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within a very thin contact layer, while it practically does not occur in the rest of the 

sample. This is consistent with experimental observation for the transformation from 

semiconducting Si I to weaker metallic II under compression in diamond anvils46. Such a 

correspondence with experiments also confirms that strain-induced rather than pressure 

or stress-induced PT occurs in Ref. 46, because pressure is practically homogeneous in 

the sample and shear stresses are very small in comparison with pressure. To some 

extent, this phenomenon was reproduced in our previous model40 without the gasket. 

However, it was based on a cohesion model and caused artificial strain localization near 

the contact surface. In Refs. 38, 39, 41, PT always started in the center rather than at the 

contact surface. Plastic flow in the whole sample towards the central region of the sample 

due to compressive transformation volumetric strain (see Fig. 5) is more pronounced than 

for the cases with equal-strength and stronger high-pressure phase. Such a flow of 

material towards the center of the sample during PT was experimentally found for weaker 

high-pressure phase of ZnSe28. Generally, the plastic flow and PT behavior is quite 

similar for the cases of weaker and equal-strength high pressure phase. However, there 

are some differences. Thus, at 9.69F   in Fig. 5, there is a curved band of localized 

plastic strain and completely transformed high-pressure phase connecting symmetry 

plane and high pressure phase near the contact surface PT. It is caused by material 

instability due to materials softening during phase transformation. However, the material 

instability is not as strong as the one in models without a gasket38-41 because plastic flow 

in a sample is confined by a stronger gasket. There are no strong oscillations in pressure 

(Fig. 6) and shear stress (Fig. 7) at the contact surface like for the case without a gasket38-

41. As it was mentioned in Refs. 38-41, strong strain and transformation localizations, and 
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oscillation of stresses create significant problems in extracting kinetic equation (8) from 

results of experiments for weaker high-pressure phase. With a strong gasket, the 

extraction of kinetic information from experiments for a weaker high-pressure phase is 

not more complicated than for equal-strength high-pressure phase.  
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FIG. 6. Distribution of pressure p at the contact surface for 2 10.3y y  . The 

dimensionless axial force F is (1) 8.59, (2) 9.33, (3) 9.69, (4) 10.3, (5) 12.21. 

 

An interesting mechanism, a sliding of a sample and gasket along the diamond, is 

revealed at point b (Fig. 1b), where all three materials are in contact. For the sample, 

contact shear stress reaches critical value 2y  (after PT is completed at this point) and 

sliding toward the center is possible (see Fig. 5). However, friction stress at the inner side 

of the gasket does not reach the critical value 13yg y   and sliding of gasket is 

forbidden. Then the gasket material at the boundary between the gasket and sample slides 

up (with respect to sample), extrudes, and produces a new contact surface with an anvil 

(see Fig. 8). Such an extrusion allows the sample to slide toward the center while 

satisfying the cohesion condition at the preexisting and new surfaces between gasket and 

anvil. We called this sliding mechanism “extrusion-based pseudoslip”.  The revealing of 
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this mechanism also confirms the accuracy of the algorithm and the solution of the 

contact problem for contact of three materials.  
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FIG. 7. Distribution of friction stress   at the contact surface for 2 10.3y y  . The 

dimensionless axial force F is (1) 8.59, (2) 9.33, (3) 9.69, (4) 10.3, (5) 12.21. 

For stronger high-pressure phase  2 13y y  , results in Figs. 9-11 are very 

different in comparison with the previous two cases with equal-strength and weaker high-

pressure phases. Hardening due to phase transformation leads to reduced plastic flow 

with increasing concentration c and delocalization of phase transformation. That is why 

plastic deformation and transformation occur much more homogeneously within the 

sample without formation and propagation of a completely transformed region. Pressure 

during transformation is quasi-homogeneous as well. It grows faster in comparison with 

the previous two cases due to a larger yield strength, which is why plastic strain required 

for complete transformation is smaller. Since the strength of a gasket and transforming 

sample is becoming comparable, material flow to the center due to PT reduces in 

comparison with the previous two cases. Based on friction shear stress distribution (Fig. 

11), the material at the exterior of the sample starts to flow to the periphery at F=13.17, 

when transformation is almost complete. Further compression is equivalent to the 
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compression of a sample without a gasket (because the strength of the sample and gasket 

is almost the same and the volume reduction  due to a small increment in c is small), 

which leads to a flow from the center, an increase in the shear friction stress and the 

pressure gradient, and consequently pressure heterogeneity and maximum pressure at the 

center. 

 

 
 

FIG. 8. Extrusion-based pseudoslip as the mechanism of sliding at the contact line (line 

GBL) between sample (left to the curve BE), gasket (right to the curve BE), and 

anvil (line GBL) during compression. Initially, points B of the sample and K of the 

gasket coincide. The evolution of geometry of two layers of finite elements along 

the contact surface (BE) in Fig. 1(d) during compression. Point L of gasket does 

not slide along the anvil because the sliding condition for it is not met, while 

sliding condition for points of the sample is satisfied. Sample sliding with respect 

to the anvil is possible because of the sliding of the gasket material along the 

sample and its extrusion, which produces a new gasket-anvil contact surface (BK). 

 

C. Stronger high-pressure phase 

Due to quasi-homogeneous distributions of pressure, plastic strain, and 

concentration of high-pressure phase, this case is the easiest one from the point of view of 

the extraction of kinetic properties from experiments. Thus, averaged over sample (or 

central part of sample) pressure, plastic strain, and concentration of high pressure phase, 
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determined both experimentally and in simulations, can be utilized for the determination 

of the  kinetic equation of the type of Eq. (8). This will be discussed below. Since at the 

symmetry axis material undergoes uniaxial compression without shear and material 

rotation, all tensors in the multiplicative decomposition of the deformation gradient 

e t p  F V F F  are coaxial, i.e., have the same principal axes, one of which is the z-axis 

and the two others are in the plane orthogonal to the z-axis. Then, multiplicative 

decomposition transforms into an additive decomposition of the logarithmic strains: 

e t pln ln ln ln .  F V F F       (15) 

Because for uniaxial compression the integration of the equation 

1/2(2 3 : )p pq  d d shows that q is equal to the negative logarithmic plastic strain along 

compression axes, along the z-axis, Eq. (15) simplifies to  

0 zeln / ln(1 ) ln(1 1 3 ) ,tH H c q             (16) 

where ze is the elastic strain along z axis. 

 Pressure can be routinely measured using fluorescence of ruby particles. 

Concentration c is measured using relative intensities of x-ray diffraction peaks19, 20. 

Thickness of the sample H under load can be measured using a special pre-calibrated 

sensor47.   
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                   (a)                                              (b)                                                     (c)                

             

                   (d)                         

FIG. 9. Distributions of (a) concentration of high-pressure phase c, (b) accumulated 

plastic strain q, (c) pressure p, and (d) radial displacement 
ru  (normalized by a 

half thickness of original sample
0 2H ) in the sample for 2 13y y  . The 

dimensionless axial force F is (1) 9.42, (2) 12.35, (3) 13.17, (4) 14.4, (5) 15.47. 
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FIG. 10. Distribution of pressure p on the contact surface for 2 13y y  . The 

dimensionless axial force F is (1) 9.42, (2) 12.35, (3) 13.17, (4) 14.4, (5) 15.47. 
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FIG. 11. Distribution of friction stress   at the contact surface for 2 13y y  . The 

dimensionless axial force F is (1) 9.42, (2) 12.35, (3) 13.17, (4) 14.4, (5) 15.47. 

 

D. Effects of kinetic parameter k 

In addition to the ratio of the yield strength of phases in a sample, the kinetic parameter k 

in Eq. (8) also has strong effect on PT and plastic flows. In this section, the effects from k 

will be investigated by comparing results of k=6 and k=30 for equal yield strengths 

between phases. As shown in Fig. 12, with growth of k from 6 to 30, the rate of PT 

increases at the initial stage of loading 11 3F . . At initial loading, the sample volume 

reduces much faster during fast PT for k=30, which leads to lower pressure than that for 

k=6 and negative mechanochemical feedback. As a result, there are not essential 

differences in concentration of high pressure phase for F=12.43 and PT for both k=6 and 

30 are completed at almost same load F. Initially, flow to the center is more pronounced 

for k=30 than k=6, which is determined by faster volume reduction during PT. In 

addition, faster kinetics leads to the formation of vertical strain and PT localization zones, 

like for k=6 and a smaller yield strength of the high-pressure phase. Pressure is quite 

homogeneous in the sample for both cases. 
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                (a)                                    (b)                            (c)      

                              

                     
                (d)                                      (e)                                    (f)                           

FIG. 12. Distributions of concentration of high-pressure phase c, accumulated plastic 

strain q, and pressure p in the sample for 2 1y y  , with k= 6 for (a), (c), and (e), 

and k=30 for (b), (d), and (f). The dimensionless axial force F is (1) 8.19, (2) 

9.22, (3) 10.85, (4) 11.13, (5) 12.43, and (6)13.29. At k=30, extrusion-based 

pseudoslip is observed. 

 
6.4. Effects of gasket/sample parameters 

In Sec. III, we found that the strain-induced PT and plastic flow under compression of a 

sample with a gasket are much different from those in a DAC without gasket38-41. In this 

section, the effects of a gasket/sample will further be investigated in detail in three 

aspects: relative sample radius, gasket/sample thickness, and gasket strength. A sample 

with equal-strength phases  2 1y y   will be analyzed.  
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A. Effects of relative sample radius 

A gasket with higher yield strength (e.g., here 13yg y  ) could effectively impede the 

flow of the sample to the periphery and reduce heterogeneity of all parameters along the 

radial direction. This effect decreases with the increase of the relative sample radius 

sS R R   and the reduction of the relative gasket length G=1-S, because the total 

friction force between anvil and gasket reduces with a decreasing contact area. Fig. 13 

shows the distributions of the concentration of high-pressure phase c and pressure p in the 

sample for relative sample radii S=0.4 and S=0.7 under a rising axial force F. As it 

follows from Figs. 13 and 14, because of smaller yield strength, the thickness of a longer 

sample reduces much faster with increasing force than of a shorter sample. This induces 

larger plastic deformation (both due to axial strain and shear strain due to friction) and 

leads to faster PT kinetics for a longer sample. As can be seen in Fig. 13 (a) and (b), 

approximately 80% of the material completely transforms into high-pressure phase at F 

=9.22 in the sample with S=0.7, while PT just starts at the contact surface of the shorter 

sample with S=0.4.  

Also, maximum pressure required for almost complete transformation in the entire 

sample is significantly larger for the shorter sample. For S=0.9, a completely transformed 

sample could not be obtained anymore, because the sample material flows outside of the 

flat anvil region, where the pressure is low. The developed simulation technique could be 

utilized for finding the optimal parameter S for different objectives. One can formulate 

the following possible objectives: (a) creating homogeneous pressure distribution to 

simplify extraction of kinetic material parameters from experiments; (b) to obtain a 

detectable amount of high-pressure phase at lowest pressure, which is important for the 
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search for new phases while avoiding fracture of an anvil; (c) to obtain the maximum 

amount of high-pressure phase at the lowest maximum pressure, which is important for 

technological application, and others. The requirement of minimum pressure can be 

substituted with a stricter requirement of a lack of fracture of anvils based on strength 

criterion.48, 49  

Fig. 15 shows variations of concentration of high-pressure phase 
0c  and 

accumulated plastic strain 
0q  averaged over a deformed sample thickness at the z-axis 

( 0r  ) versus pressure p on the contact surface at the symmetry axis z. The reason for 

focusing on these parameters is that 
0c  and p can be directly measured and plastic strain 

at the z-axis for relatively small S can be calculated based on a reduction in thickness 

(which can be measured) and measured 
0c  and p (see Section 6). One could note that for 

the same pressure, the rate of PT with a longer sample is faster than for a shorter one due 

to larger plastic deformation during initially faster thickness reduction (Fig 15). For the 

shorter sample, when force exceeds 11 (Fig. 14), a very fast reduction in thickness 

occurs, which causes a sharp increase in plastic strain, concentrations, and corresponding 

pressure drop (Fig. 15) due to volume reduction. After this, the pressure grows up to 25 

to complete PT for the shorter sample in comparison with 18 for the longer sample.  

PT starts at different pressures for different S.  Thus, if initiation of PT is accepted 

as a detection of 
0 0 025c . , then it starts at 8 23p .  for the longer sample and at 

8 89p .  for the shorter sample. This is one possible explanation for different 

transformation pressure observed in experiments with different gaskets12, 30.  
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                               (a)                                       (b) 

                               
                               (c)                                       (d) 

FIG. 13. Distributions of concentration of high-pressure phase c, and pressure p in the 

sample for 1 0H H  and 13yg y  , for relative sample radii 0 4S .  ((a) and 

(c)) and 0 7S .  ((b) and (d)). The dimensionless axial force F is (1) 8.19, (2) 

9.22, (3) 10.85, (4) 11.13. 
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FIG. 14. Variations of concentration of high-pressure phase c  and accumulated plastic 

strain q  averaged over the entire sample, and current relative thickness of 

sample
0h H versus axial force F for 1 0H H , 13yg y  , and different relative 

sample radii 0 4S .  and 0 7S . . 
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FIG. 15. Variations of concentration of high-pressure phase 

0c  and accumulated plastic 

strain 
0q  averaged over deformed sample thickness at 0r   versus pressure p at 

the contact surface at 0r  , for 1 0H H , 13yg y   and different relative 

sample radii 0 4S .  and 0 7S . . 

 

B. Effects of sample relative initial thickness 

In this section we will discuss the effects of the sample initial thickness on the 

deformation and transformation processes. From Fig. 16, one can note that the geometry 

of the sample exterior in the deformed configuration is different for thin and thick 

samples. While for 
0 0 2H R .  sliding to the periphery at the contact surface of a sample is 

well visible, for 
0 0 3H R .  sliding at the contact surface of a sample is practically absent 

but radial flow intensifies away from the contact surface and is maximal at the symmetry 

plane. Figs. 16 (a) and (b) show that for the same axial force F the PT progress is slightly 

faster in a thinner sample (except at the periphery), which is caused by both higher 

pressure and larger accumulated plastic strain. However, the PT propagates much faster 

in the small periphery region of a thicker sample, because of higher pressure and larger 

plastic deformation (Fig. 16). Since the volume at the periphery is much larger than the 
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volume at the center, the average concentrations c  over the entire sample for both cases 

in Fig 17 are surprisingly very close. It could be seen in Fig. 16 that pressure is very 

heterogeneous for both cases, but for a larger thickness the pressure heterogeneity in the 

radial direction is obviously smaller. Fig. 17 presents that averaged over sample 

accumulated plastic strain is slightly larger for the thinner sample, which is caused by a 

slightly faster reduction in relative thickness. Note that the total axial displacement for 

the thicker sample is larger but 
0h H is smaller. Although for the same axial force F an 

averaged PT kinetics is faster and accumulated plastic strain is larger in Fig. 16 at the 

center of a thinner sample, Fig. 18 shows that at the center, for the same pressure, 

concentration of the high-pressure phase and accumulated plastic strain are almost the 

same.  

 To summarize, for the same force and pressure, PT progress is practically 

independent of the thickness 
0H R  of a sample. This means that the volume of 

transformed phase is larger for larger initial thickness. Pressure heterogeneity is smaller 

for larger thickness as well. 
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                        (a)                                           (b) 

        
                          (c)                                            (d)  

     

                                       (e)                                            (f) 

FIG. 16. Distributions of concentration of high-pressure phase c, pressure p, and 

accumulated plastic strain q in the sample for 0 7S .  and 13yg y  , for relative 

sample thickness
0 0 2H R .  ((a), (c) and (e)) and 

0 0 3H R .  ((b), (d) and (f)). The 

dimensionless axial force F is (1) 8.19, (2) 9.22, (3) 10.85, (4) 11.13. 
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FIG. 17. Variations of concentration of high-pressure phase c  and accumulated plastic 

strain q  averaged over the entire sample and current relative thickness of 

sample
0h H  versus axial force F for 0 7sR . R , 13yg y  , and two different 

sample thicknesses
0 0 2H . R  and 

0 0 3H . R . 
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FIG. 18. Variations of concentration of high-pressure phase 

0c  and accumulated plastic 

strain 
0q  averaged over deformed sample thickness at 0r   versus pressure p at 

the contact surface for 0r  , for 0 7sR . R  , 13yg y  , and for different 

sample thicknesses
0 0 2H . R  and 

0 0 3H . R . 
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C. Effects of gasket strength 

The effects of gasket strength on PT and plastic flow will be studied by 

comparing results for gaskets with yield strengths 13yg y   and 12yg y  . With the 

reduction of gasket strength, the reduction in sample thickness and radial material flows 

are intensified (Fig. 19). At 11 09F= .  in Fig.19 (b) and (d), the sample points reach the 

anvil radius R. This means that pressure at the periphery is low and the material does not 

transform completely. The sample with a weaker gasket has much larger accumulated 

plastic strain, which intensifies PT kinetics. At the initial loading, higher pressure close to 

the center is another reason for faster PT rate for the case with a weaker gasket. 

Therefore, some reduction of the yield strength of the gasket intensifies PT kinetics due 

to larger plastic deformation, but it increases the heterogeneity of pressure (Fig. 19). Fig. 

20 presents that at the initial loading averaged over sample concentration of high pressure 

phase is larger for a weaker gasket, due to larger plastic strain during faster thickness 

reduction. At the late stage of loading, PT is uncompleted only at the periphery (Figs. 19 

(a) and (b)), and averaged concentration over the sample increases more slowly for a 

weaker gasket (Fig. 20), due to lower pressure in the periphery. At the center of a sample, 

for the same pressure at the contact surface, Fig. 21 shows that PT progress is slightly 

more pronounced for the case with a weaker gasket, due to larger accumulated plastic 

strain during faster reduction of thickness.  
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                         (a)                                                       (b) 

     

                         (c)                                                       (d) 

FIG. 19. Distributions of concentration of high-pressure phase c and pressure p in the 

sample for 0 7sR . R  and 
1 0H H , with gasket strength 13yg y   ((a) and (c)) 

and 12yg y  ((b) and (d)). The dimensionless axial force F is (1) 8.19, (2) 9.22, 

(3) 10.85, (4) 11.09. 
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FIG. 20. Variations of averaged over the whole sample concentration of high-pressure 

phase c  and accumulated plastic strain q , and relative current thickness of 

sample
0h H  as functions of axial force F for 0 7sR . R  and 

1 0H H , with 

different gasket strengths 13yg y   and 12yg y  . 
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FIG. 21. Variations of concentration of high-pressure phase 

0c  and accumulated plastic 

strain 
0q  averaged over current sample thickness at 0r   versus pressure p at 

the contact surface at 0r  , for 0 7sR . R , 
1 0H H , and different gasket 

strengths 13yg y   and 12yg y  . 

 

6.5 Possibility of experimental determination of kinetic equation for phase 

transformations to stronger high pressure phase 

Here we will discuss how to apply obtained results for experimental 

determination of kinetic equation of the type of Eq. (8). As it was discussed in Section 

III, for the high pressure phase with lower and equal yield strengths than for low-pressure 

phase, we do not currently see a simple way to determine kinetic equation. This is 

because the solution for concentration has a form of localized high-pressure and low-

pressure phases separated by a quite narrow interface, which makes it difficult to 

determine intermediate values of concentration c.  However, for a stronger high-pressure 

phase, all fields (pressure, concentration, and plastic strains) are quasi-homogeneous at 

least near the center of a sample and can be determined without direct measurement of 

the plastic strain.   
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To simplify the procedure and eliminate strain hardening of phases (i.e., 

dependence of the yield strength on accumulated plastic strain q), the sample material 

should be initially strongly plastically deformed to q>1. This can be done by 

compression, extrusion, rolling, ball milling, and other methods of plastic deformation. 

Then constant or pressure-dependent yield strength of phases 1y  and 2y can be 

determined by compression of a sample without a gasket (or with a gasket but R Rs ) 

by measuring pressure distribution and sample thickness H for single-phase samples, i.e., 

before and after complete phase transformation (see Ref. 45). There are some different 

methods, (see e.g., Ref. 50).  

Since at the symmetry axis the material undergoes uniaxial compression without 

shear and material rotation, all tensors in the multiplicative decomposition of the 

deformation gradient e t p  F V F F  are coaxial, i.e., have the same principal axes, one of 

which is the z-axis and the two others are in the plane orthogonal to the z-axis. Then 

multiplicative decomposition transforms to an additive decomposition of the logarithmic 

strains: 

e t pln ln ln ln .  F V F F     (15) 

Along the z-axis, Eq. (15) simplifies to  

0 zeln / ln(1 ) ln(1 1/ 3 ) ,tH H c q               (16) 

because for uniaxial compression, the integration of the equation 

1/2(2 3 : )p pq  d d shows that q is equal to the negative logarithmic plastic strain along 

the compression axis. Indeed, for constant principle axes of plastic deformation gradient 

pF , 1 lnp p p

d
F F

dt

   pd F . Plastic incompressibility condition ln 2ln 0F F 
pz pr  
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results in d 1 2dpr pz  , and  

 
1

2
2 22

d 2d d ln ln
3

pz pr pz

d d
q F F

dt dt

 
      
 

pz pz , which leads to 

lnq F 
pz . 

 Pressure can be routinely measured using fluorescence of ruby particles. 

Concentration c is measured using relative intensities of x ray diffraction peaks19, 20. 

Thickness of the sample H under load can be measured using a special pre-calibrated 

sensor47, 50.  Pressures at which direct d

hp and reverse r

hp  PTs occur under hydrostatic 

loading can be determined using standard methods. 

Stress state at the symmetry axis is characterized by three principle stresses z , 

r , r , which gives mean stress 0 ( 2 ) / 3z rp      and deviatoric stresses 

0 2( ) / 3z z z rs        and 0 ( ) / 3r r r zs        . The stress intensity 

2 2 23 / 2( 2 )i z r z r ys s        . Thus, knowledge of y and pressure p allows one to 

define stresses z and r , and then with the help of elasticity rule Eq. (2) . Then all 

parameters for the determination of accumulated plastic strain in Eq. (16) are known. In 

such a way, for each loading step, one can determine p, c, and q and thus have all the 

parameters in the kinetic equation Eq. (8). By varying initial thickness and relative radius 

of the sample and gasket material, one can obtain various combinations of pressure and 

plastic strains and corresponding transformation kinetics. One can check correctness of 

Eq. (8) and if accuracy is not sufficient, determine more precise kinetic equation and find 

rationale for it.   
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6.6 Concluding remarks 

In this paper, an advanced modeling approach for high-pressure phase 

transformations in a sample within a gasket compressed in the DAC is developed. The 

key point is that under such conditions phase transformations are treated as the plastic 

strain-induced ones rather than pressure-induced transformations. This is not just a 

terminological difference. Strain-induced PTs have completely different mechanisms and 

thermodynamic and kinetic description. In particular, a strain-controlled and pressure-

dependent kinetic equation (8) is utilized in the model. Other points that ensure an 

adequate modeling are: a description of coupled PTs and plastic flow under large strains 

and allowing for contact sliding with combined Coulomb and plastic friction at the 

boundaries between sample, gasket and anvil. The latter allowed us to reveal new sliding 

mechanism at the contact line between sample, gasket, and anvil. When the sliding 

condition along the boundary with the diamond is met for the sample but not for gasket, 

the sample still can slide without producing a gap between the sample and gasket. Gasket 

material at the boundary with the sample slips along the sample and extrudes to the 

diamond-gasket boundary, producing a new surface area.  This mechanism was called 

extrusion-based pseudoslip and it is very important for providing the possibility of 

sample flow toward the center and producing high quasi-homogeneous pressure. 

Obtained results demonstrate that experimentally obtained pressure for initiation and 

completion of PT and the entire p-c curve do not represent fundamental properties of 

phase transformation but rather deformation and transformation behavior of the 

sample/gasket system. That is why pressure for initiation and completion of PT and the 

entire p-c curve vary in different works that use different geometric parameters and 
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gasket materials, as well as different high-pressure apparatuses. Consequently, plastic 

strain is a primary parameter, which should be measured, along with pressure and 

concentration of high-pressure phase. One of the most important results consists of the 

suggested method to extract full kinetic information (including plastic strain) from 

experiments for stronger high-pressure phase, which was not possible without the gasket. 

If realized in practice, it will completely change the characterization of high-pressure 

phase transformation and lead to the possibility of characterizing material transformation 

behavior rather than mechanical and transformational behavior of a sample/gasket/anvil 

system. It is still impossible for a material with weaker and equal-strength high-pressure 

phase. For such materials, completely transformed high-pressure phase appears at the 

diamond-sample boundary (which corresponds to experiment in Ref. 46) and propagates 

toward the symmetry axis without large regions with intermediate values of c. We hope 

that superposition of torsion will create a more homogeneous distribution of all 

parameters in the sample, which will allow us to formulate methods of experimental 

determination of the strain-controlled kinetic equation. This will be studied in future 

works. The obtained model and results are also beneficial to design high pressure 

experiments for different purposes, including producing the highest possible and quasi-

homogeneous pressure without breaking the diamond.  
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CHAPTER 7. GENERAL CONCLUSIONS 

When hydrostatic media is used, PT is classified as pressure-induced one and it 

starts by nucleation at pre-existing defects (pressure and stress concentrators). In order to 

study the effect of plastic deformations on PTs, a RDAC and DAC without hydrostatic 

media were utilized, in which large plastic shear is superposed in the sample under high 

pressure. Such PTs are classified as strain-induced ones and they occur by nucleation at 

defects that continuously appear during the plastic deformation. Plastic strain-induced 

phase transformations (PTs) in a sample under compression in DAC, and compression 

and torsion in RDAC are investigated in detail, by applying finite element approach. A 

large-strain model for coupled PTs and plastic flow is developed, which includes 

micromechanically based strain-controlled kinetics.  

First, detailed analyses of the coupled plastic flow and PTs in DAC and RDAC 

are studied during loading, unloading, and reloading for various ratios of the yield 

strengths of the low and high pressure phases, kinetic parameters, and friction 

parameters. In contrast to previous studies, the kinetic equation includes the pressure 

range, in which both direct and reverse PTs occur simultaneously. Results are compared 

to the case when “no transformation” region in the pressure range exists instead, for 

various values of the kinetic parameters and ratios of the yield strengths of low and high 

pressure phases. During unloading, unexpected intensive plastic flow and reverse PT are 

revealed, which change the interpretation of experimental results. After reloading, the 

reverse PT continues followed by intense direct PT and the effect of reloading paths on 

PTs is examined. 

Second, an extended version of the Coulomb and plastic friction model for 

multiphase material with evolving concentration of phases is developed and implemented 
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in ABAQUS to model contact interaction on the contact surface. All drawbacks typical of 

problem with cohesion are overcome, including eliminating mesh-dependent shear band 

and artificial plastic zones. A large contact sliding and the effect of self-locking of sliding 

are revealed in DAC. Also, cyclic back and forth torsion in RDAC is studied and 

compared to unidirectional torsion. Sliding and the reduction in friction coefficient 

intensify radial plastic flow in the entire sample (excluding a narrow region near the 

contact surface) and a reduction in thickness. Increases in both plastic strain and pressure 

lead to intensification of strain-induced PT. Thus, plastic flow and PT can be controlled 

by controlling friction. 

Third, combined high pressure phase transformations (PTs) and plastic flow in a 

sample within a gasket compressed in diamond anvil cell (DAC) are studied for the first 

time using finite element method (FEM). The model takes into account contact sliding 

with Coulomb and plastic friction at the boundaries between the sample, gasket and anvil. 

A new sliding mechanism at the contact line between the sample, gasket, and anvil called 

extrusion-based pseudoslip is revealed, which plays an important part in producing high 

pressure. Strain-controlled kinetics explains why experimentally determined phase 

transformation pressure and kinetics (concentration of high pressure phase vs. pressure) 

differ for different geometries and properties of the gasket and the sample: they provide 

different plastic strain, which was not measured. Utilization of the gasket changes radial 

plastic flow toward the center of a sample, which leads to high quasi-homogeneous 

pressure for some geometries. For transformation to a stronger high pressure phase, 

plastic strain and concentration of a high-pressure phase are also quasi-homogeneous. 

This allowed us to suggest a method of determining strain-controlled kinetics from 
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experimentation, which is not possible for weaker and equal-strength high-pressure 

phases and cases without a gasket. 

 Last, multiple experimental phenomena are reproduced and interpreted, including 

pressure self-multiplication/demultiplication effects, small 'steps' on pressure distribution 

in the two-phase region, simultaneous occurrences of direct and reverse PTs, oscillatory 

distribution of pressure for weaker high-pressure phase, and a thin layer of high-pressure 

phase on a contact surface. Two types of pressure variations are revealed in RDAC, 

which are qualitatively consistent within experimental observations for ZnSe and KCl. 

Reverse PT in high pressure phase that flowed to the low pressure region is revealed. 

Possible misinterpretation of experimental PT pressure is found. Obtained results lead to 

ways of controlling PTs by varying compression-torsion paths, by varying friction 

condition, and by varying the size and strength of sample/gasket. Similar numerical 

approaches can be also applied to study strain-induced PTs during ball milling, high 

pressure torsion, and other processes. The obtained models and results are beneficial to 

design high pressure experiments for different purposes, including the search of new high 

pressure phases and including producing the highest possible and quasi-homogeneous 

pressure without breaking the diamond. 

In current models, we assume small elastic strains, which limits pressure to the 

value of 0.1 K (i.e., in the range of 10-20 GPa). However, for higher pressure, this small 

elastic assumption may not be suitable, and a new non-linear elasticity model will be 

utilized, in which the elastic moduli may be pressure-dependent. In addition, diamond 

anvil is assumed as rigid body and large deformation will appear after super high pressure 

is applied. Thus, a deformable anvils needs to take into account. Finally, perfectly plastic 
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material is applied in sample for current models but yield strength may depend on 

pressure and accumulated plastic strain. In future, a large-deformation theory will be 

proposed, in which non-linear elasticity, dependence of yield strength on pressure and 

accumulated plastic strain, and deformable diamond anvil will be included.  
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